2022年高中数学必修三知识点大全 .pdf

上传人:H****o 文档编号:32449687 上传时间:2022-08-09 格式:PDF 页数:27 大小:501.84KB
返回 下载 相关 举报
2022年高中数学必修三知识点大全 .pdf_第1页
第1页 / 共27页
2022年高中数学必修三知识点大全 .pdf_第2页
第2页 / 共27页
点击查看更多>>
资源描述

《2022年高中数学必修三知识点大全 .pdf》由会员分享,可在线阅读,更多相关《2022年高中数学必修三知识点大全 .pdf(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、/27 1 知识点串讲必修三精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 27 页/27 2 第一章:算法1. 1.1 算法的概念1、算法 (algorithm)一词源于算术(algorism),即算术方法,是指一个由已知推求未知的运算过程。后来,人们把它推广到一般,把进行某一工作的方法和步骤称为算法。广义地说,算法就是做某一件事的步骤或程序。2、任意给定一个大于1 的整数 n,试设计一个程序或步骤对n 是否为质数做出判定。解析:根据质数的定义判断解:算法如下:第一步:判断n 是否等于2,假设 n=2,则 n 是质数;假设n2,则执行

2、第二步。第二步:依次从2 至 n-1 检验是不是n 的因数,即整除n 的数,假设有这样的数,则n 不是质数;假设没有这样的数,则n 是质数。3、一个人带三只狼和三只羚羊过河,只有一条船,同船可以容纳一个人和两只动物没有人在的时候,如果狼的数量不少于羚羊的数量,狼就会吃掉羚羊请设计过河的算法。解:算法或步骤如下:S1 人带两只狼过河;S2 人自己返回;S3 人带一只羚羊过河;S4 人带两只狼返回;S5 人带两只羚羊过河;S6 人自己返回;S7 人带两只狼过河;S8 人自己返回;S9 人带一只狼过河1 12 程序框图1、基本概念:1起止框图:起止框是任何流程图都不可缺少的,它说明程序的开始和结束,

3、所以一个完整的流程图的首末两端必须是起止框。2输入、输出框:表示数据的输入或结果的输出,它可用在算法中的任何需要输入、输出的位置。3处理框:它是采用来赋值、执行计算语句、传送运算结果的图形符号。4判断框:判断框一般有一个入口和两个出口,有时也有多个出口,它是惟一的具有两个或两个以上出口的符号,在只有两个出口的情形中,通常都分成“是”与“否”也可用“ Y”与“N” 两个分支。2、顺序结构:顺序结构描述的是是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的。3、已知一个三角形的三边分别为2、3、4,利用海伦公式设计一个算法,求出它的面积,并画出算法的程序框图。算法分析:这是一个

4、简单的问题,只需先算出p 的值,再将它代入公式,最后输出结果,只用顺序结精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 27 页/27 3 p=(2+3+4)/2输出 s 构就能够表达出算法。解:程序框图:2 4、条件结构:根据条件选择执行不同指令的控制结构。5、求 x 的绝对值,画出程序框图。开始输入 x 是 x0?否输出 x 输出 - x 结束6、循环结构:在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。循环结构分为两类:1一

5、类是当型循环结构,如图1所示,它的功能是当给定的条件P1 成立时,执行A 框, A 框执行完毕后,再判断条件P1是否成立,如果仍然成立,再执行A框,如此反复执行A框,直到某一次条件 P1 不成立为止,此时不再执行A框,从 b离开循环结构。开始s=p(p-2)(p-3)(p-4)结束精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 27 页/27 4 2另一类是直到型循环结构,如图2 所示,它的功能是先执行,然后判断给定的条件P2是否成立,如果P2 仍然不成立,则继续执行A 框,直到某一次给定的条件P2 成立为止,此时不再执行A框,从 b

6、点离开循环结构。 A A P1?成立 P2?不成立不成立成立当型循环结构直到型循环结构127、输入 3 个实数按从大到小的次序排序。解:程序框图:精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 27 页/27 5 8、给出 50 个数, 1, 2,4,7,11,其规律是:第1 个数是 1,第 2 个数比第1 个数大 1,第 3个数比第 2 个数大 2,第 4 个数比第3 个数大 3,以此类推 . 要求计算这50 个数的和 . 将下面给出的程序框图补充完整. 1_i =0 THEN PRINT x ELSE PRINT -x END IF

7、 END 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 27 页/27 9 3、下面程序运行后实现的功能为_1.23 循环语句1、WHILE语句的一般格式是对应的程序框图是2、当电脑遇到WHILE语句时,先判断条件的真假,如果条件符合,就执行WHILE与 WEND 之间的循环体;然后再检查上述条件,如果条件仍符合,再次执行循环体,这个过程反复进行,直到某一次条件不符合为止。 这时,电脑将不执行循环体,直接跳到WEND 语句后, 接着执行WEND 之后的语句。 因此,当型循环有时也称为“前测试型”循环。3、UNTIL语句的一般格式是对应

8、的程序框图是INPUT“a,b,c =”;a,b,c IF ba THEN t=a a=b b=t END IF IF ca THEN t=a a=c c=t END IF IF cb THEN t=b b=c c=t END IF PRINT a,b,c END WHILE 条件循环体WEND 满足条件?循环体否是循环体精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 9 页,共 27 页/27 10 4、直到型循环又称为“后测试型”循环,从UNTIL 型循环结构分析,电脑执行该语句时,先执行一次循环体,然后进行条件的判断,如果条件不满足,继续返回

9、执行循环体,然后再进行条件的判断,这个过程反复进行,直到某一次条件满足时,不再执行循环体,跳到LOOP UNTIL语句后执行其他语句,是先执行循环体后进行条件判断的循环语句。5、编写程序,计算自然数1+2+3+ +99+100 的和。分析:这是一个累加问题。我们可以用WHILE型语句,也可以用UNTIL型语句。程序 WHILE语句 :i=1 sum=0 WHILE i100 PRINT sum END 6、设计一个算法:求满足12 3 n 10000 的最小正整数n,并写出相应的程序。解: i = 0 sum = 0 DO i = i + 1 sum = sum + i LOOP UNTIL

10、sum10000 PRINT i END DO 循环体LOOP UNTIL 条件精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 10 页,共 27 页/27 11 1. 3算法案例1、辗转相除法: 例 1 求两个正数8251 和 6105 的最大公约数。解: 8251610512146 6105214621813 214618131333 18133335 148 333148237 1483740 则 37 为 8251 与 6105 的最大公约数。2、更相减损术: 用更相减损术求98 与 63 的最大公约数. 解: 98 6335 633528

11、 35287 28721 21714 1477 所以, 98 与 63 的最大公约数是7。3、 1都是求最大公约数的方法,计算上辗转相除法以除法为主,更相减损术以减法为主,计算次数上辗转相除法计算次数相对较少,特别当两个数字大小区别较大时计算次数的区别较明显。2从结果表达形式来看,辗转相除法表达结果是以相除余数为0 则得到,而更相减损术则以减数与差相等而得到4、秦九韶算法秦九韶计算多项式的方法令,则有,其中. 这样,我们便可由依次求出;精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 11 页,共 27 页/27 12 显然,用秦九韶算法求n 次多项

12、式的值时只需要做n 次乘法和n 次加法运算5、k 进制转换为十进制的方法:,6、十进制转化为k 进制数 b 的步骤为:第一步,将给定的十进制整数除以基数k,余数便是等值的k 进制的最低位;第二步,将上一步的商再除以基数k,余数便是等值的k 进制数的次低位;第三步,重复第二步,直到最后所得的商等于0 为止,各次所得的余数,便是k 进制各位的数,最后一次余数是最高位,即除k 取余法 . 7、已知一个五次多项式为8.07.16.25.325)(2345xxxxxxf用秦九韶算法求这个多项式当 x = 5的值。解:将多项式变形:8.0)7.1)6 .2)5.3)25()(xxxxxxf按由里到外的顺序

13、,依此计算一次多项式当x = 5时的值:50v,272551v,5.1385 .35272v,9.6896 .255 .1383v2.34517.159 .6894v,2 .172558.052.34515v所以,当x = 5 时,多项式的值等于17255.2 8、将二进制数110011(2) 化成十进制数解:根据进位制的定义可知012345)2(21212020212111001112116132151所以, 110011 2=51。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 12 页,共 27 页/27 13 第二章:统计2. 1.1简单随

14、机抽样1、简单随机抽样的概念:一般地,设一个总体含有N个个体,从中逐个不放回地抽取n 个个体作为样本nN ,如果每次抽取时总体内的各个个体被抽到的时机都相等,就把这种抽样方法叫做简单随机抽样。思考:简单随机抽样的每个个体入样的可能性为多少?n/N2、抽签法一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n 次,就得到一个容量为n 的样本。抽签法的一般步骤:1将总体的个体编号; 2连续抽签获取样本号码. 思考:你认为抽签法有什么优点和缺点;当总体中的个体数很多时,用抽签法方便吗?解析:操作简便易行,当总体个数较多时工作量

15、大,也很难做到“搅拌均匀”3、随机数法利用随机数表、随机数骰子或电脑产生的随机数进行抽样,叫随机数表法. 怎样利用随机数表产生样本呢?下面通过例子来说明,假设我们要考察某公司生产的 500克袋装牛奶的质量是否达标,现从800 袋牛奶中抽取60 袋进行检验,利用随机数表抽取样本时,可以按照下面的步骤进行。第一步,先将800 袋牛奶编号,可以编为000,001, 799。第二步,在随机数表中任选一个数,例如选出第8 行第 7 列的数7为了便于说明,下面摘取了附表 1 的第 6 行至第 10 行 。16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 84 42

16、17 53 31 57 24 55 06 88 77 04 74 47 67 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 57 60 86 32 44 09 47 27 96 54 49 17 46 09 62 87 35 20 96 43 84 26 34 91 64 21 76 33 50 25 83 92 12 06 76 12 86 73 58 07 44 39 52 38 79 15 51 00 13 42 99 66 02 79 54 90 52

17、84 77 27 08 02 73 43 28 第三步,从选定的数7 开始向右读读数的方向也可以是向左、向上、向下等,得到一个三位数 785,由于 785799,说明号码785 在总体内, 将它取出; 继续向右读, 得到 916,由于 916799,将它去掉,按照这种方法继续向右读,又取出567,199,507,依次下去,直到样本的60 个号码全部取出,这样我们就得到一个容量为60 的样本。4、 随机数表法的步骤:1将总体的个体编号; 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 13 页,共 27 页/27 14 2在随机数表中选择开始数字;

18、3读数获取样本号码. 思考:结合自己的体会说说随机数法有什么优缺点?解析:相对于抽签法有效地防止了搅拌不均匀的弊端,但读数和计数时容易出错. 精讲精练 : 5、以下抽取样本的方式是否属于简单随机抽样?说明理由 . (1)从无限多个个体中抽取100 个个体作为样本; (2)盒子中共有80 个零件 , 从中选出 5个零件进行质量检验, 在进行操作时 , 从中任意抽出一个零件进行质量检验后把它放回盒子里; (3)某班 45 名同学 , 指定个子最高的5 人参加某活动; (4)从 20 个零件中一次性抽出3 个进行质量检测. 解析 根据简单随机抽样的特点进行判断,考查学生对简单随机抽样的理解; 解 (

19、1)不是简单随机抽样,由于被抽取的样本的总体个数是无限的; (2)不是简单随机抽样,由于它是放回抽样; (3)不是简单随机抽样,因为不是等可能性抽样; (4)不是简单随机抽样,因为不是逐个抽样. 点评 判断所给抽样是不是简单随机抽样,关键是看它们是否符合简单随机抽样的四个特点. 6、一个总体中共有200 个个体, 用简单随机抽样的方法从中抽取一个容量为20 的样本, 则某一特定个体 a 被抽到的可能性是,a 在第 10 次被抽到的可能性是精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 14 页,共 27 页/27 15 2. 1.2系统抽样1、系统

20、抽样的定义:一般地,要从容量为N的总体中抽取容量为n 的样本,可将总体分成均衡的假设干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样。【说明】由系统抽样的定义可知系统抽样有以下特证:1当总体容量N较大时,采用系统抽样。2将总体分成均衡的假设干部分指的是将总体分段,分段的间隔要求相等,因此,系统抽样又称等距抽样,这时间隔一般为knN. 3预先制定的规则指的是:在第1 段内采用简单随机抽样确定一个起始编号,此编号基础上加上分段间隔的整倍数即为抽样编号. 2、以下抽样中不是系统抽样的是 A、从标有115 号的 15 号的 15 个小球中任选3 个作

21、为样本,按从小号到大号排序,随机确定起点i, 以后为 i+5, i+10(超过 15 则从 1 再数起 ) 号入样 B、工厂生产的产品,用传关带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品检验 C、搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的调查人数为止 D、电影院调查观众的某一指标,通知每排每排人数相等座位号为14 的观众留下来座谈解析: 2c 不是系统抽样,因为事先不知道总体,抽样方法不能保证每个个体按事先规定的概率入样。3、系统抽样的一般步骤:1采用随机抽样的方法将总体中的N个个编号。2将整体按编号进行分段,确定分段间隔k,knN. 3在第一段

22、用简单随机抽样确定起始个体的编号LLN,Lk 。4按照一定的规则抽取样本,通常是将起始编号L 加上间隔k 得到第 2 个个体编号 L+k,再加上k 得到第 3 个个体编号L+2k,这样继续下去,直到获取整个样本。【说明】1从系统抽样的步骤可以看出,系统抽样是把一个问题划分成假设干部分分块解决,从而把复杂问题简单化,表达了数学转化思想。2如果遇到nN不是整数的情况,可以先从总体中随机的剔除几个个体,使得总体中剩余的个体数能被样本容量整除。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 15 页,共 27 页/27 16 2. 1.3分层抽样教案1、分

23、层抽样的定义. 一般地 , 在抽样时 , 将总体分成互不交叉的层, 然后按照一定的比例, 从各层独立地抽取一定数量的个体, 将各层取出的个体合在一起作为样本, 这种抽样的方法叫分层抽样?【说明】分层抽样又称类型抽样, 应用分层抽样应遵循以下要求: (1) 分层 : 将相似的个体归人一类, 即为一层 , 分层要求每层的各个个体互不交叉, 即遵循不重复?不遗漏的原则 ?(2) 分层抽样为保证每个个体等可能入样, 需遵循在各层中进行简单随机抽样, 每层样本数量与每层个体数量的比与这层个体数量与总体容量的比相等, 即保持样本结构与总体结构一致性?2、分层抽样的步骤: (1) 分层 : 按某种特征将总体

24、分成假设干部分? (2)按比例确定每层抽取个体的个数?(3) 各层分别按简单随机抽样或系统抽样的方法抽取? (4)综合每层抽样, 组成样本 ?【说明】(1) 分层需遵循不重复?不遗漏的原则?(2) 抽取比例由每层个体占总体的比例确定?(3) 各层抽样按简单随机抽样或系统抽样的方法进行?3、如果采用分层抽样, 从个体数为N的总体中抽取一个容量为n 样本 , 那么每个个体被抽到的可能性为 ( ) A.N1 B.n1 C.Nn D.Nn点拨:(1) 保证每个个体等可能入样是简单随机抽样?系统抽样 ?分层抽样共同的特征, 为了保证这一点,分层时用同一抽样比是必不可少的, 故此选 C? (2)根据每个个

25、体都等可能入样, 所以其可能性本容量与总体容量比,故此题选C?4、简单随机抽样?系统抽样 ?分层抽样的比较类 别共同点各自特点联系适用范围简单随机抽样(1) 抽 样 过 程 中每个个体被抽到的可能性相等(2) 每 次 抽 出 个体后不再将它放回 , 即 不 放 回 抽样从总体中逐个抽取总体个数较少系统抽样将 总 体 均 分 成 几 部分 , 按预先制定的规则在各部分抽取在起始部分样时采用简随机抽样总体个数较多分层抽样将总体分成几层, 分层进行抽取分层抽样时采用简单随机抽样或系统抽样总体由差异明显的几部分组成5、某高中共有900 人,其中高一年级300 人,高二年级200 人,高三年级400 人

26、,现采用分层抽样抽取容量为45 的样本,那么高一、高二、高三各年级抽取的人数分别为A.15,5,25 B.15,15,15 C.10,5,30 D15,10,20 分析 因为 300: 200:400=3: 2:4,于是将45 分成 3:2:4 的三部分。设三部分各抽取的个体数分别为 3x,2x,4x,由 3x+2x+4x=45,得 x=5,故高一、高二、高三各年级抽取的人数分别为15,10,20,故选 D。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 16 页,共 27 页/27 17 2. 2.1 用样本的频率分布估计总体分布1、频率分布直方

27、图频率分布是指一个样本数据在各个小范围内所占比例的大小。一般用频率分布直方图反映样本的频率分布。其一般步骤为:1计算一组数据中最大值与最小值的差,即求极差2决定组距与组数,组距极差组数3将数据分组4列频率分布表5画频率分布直方图2、频率分布直方图的特征:1从频率分布直方图可以清楚的看出数据分布的总体趋势。2从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了。3、频率分布折线图的定义:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图。4、总体密度曲线的定义:在样本频率分布直方图中,随着样本容量的增加,所分组数的增加,组距减小,相应的频率折线图会

28、越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线。它能够精确地反映了总体在各个范围内取值的百分比,它能给我们提供更加精细的信息。5、思考探究:1对于任何一个总体,它的密度曲线是不是一定存在?为什么?2对于任何一个总体,它的密度曲线是否可以被非常准确地画出来?为什么?答:实际上,尽管有些总体密度曲线是客观存在的,但一般很难想函数图象那样准确地画出来,我们只能用样本的频率分布对它进行估计,一般来说,样本容量越大,这种估计就越精确。6、茎叶图的概念:当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像

29、植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图。7、茎叶图的特征: 用茎叶图表示数据的优点:一是既可以看出样本的分布情况又能看到原始数据;二是茎叶图中的数据可以随时记录,随时添加,方便记录与表示。 茎叶图只便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数据,两个以上的数据虽然能够记录,但是没有表示两个记录那么直观,清晰。8、下表给出了某校500 名 12 岁男孩中用随机抽样得出的120 人的身高 ( 单位 ) 区间界限122,126)126,130)130,134)134,138)138,142)142,146)人数5810223320区间界限146,150)150,154)154

30、,158)人数11651列出样本频率分布表;2画出频率分布直方图;3画出频率分布折线图;4估计身高小于134的人数占总人数的百分比. 。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 17 页,共 27 页/27 18 解: 样本频率分布表如下:2、3其频率分布直方图如下:4由样本频率分布表可知身高小于134cm 的男孩出现的频率为0.04+0.07+0.08=0.19,所以我们估计身高小于134cm的人数占总人数的19%. 9、从两个班中各随机的抽取10 名学生,他们的数学成绩如下:甲班: 76,74, 82,96,66, 76,78,72,52

31、,68 乙班: 86,84, 62,76,78, 92,82,74,88,85 画出茎叶图并分析两个班学生的数学学习情况。解析:由茎叶图可知,乙班的成绩较好,而且较稳定。分组频数频率122,126)50.04126,130)80.07130,134)100.08134,138)220.18138,142)330.28142,146)200.17146,150)110.09150,154)60.05154,158)50.04合计1201_ 2_ 6 4 2 8 5_ 4 6 8_ 2_ 6_ 2_ 2 4 6 6 8_ 6 8_ 2_ 5_ 6_ 7_ 8_ 9_ ?_ ?精选学习资料 - -

32、- - - - - - - 名师归纳总结 - - - - - - -第 18 页,共 27 页/27 19 2. 2.2 用样本的数字特征估计总体的数字特征1、众数、中位数、平均数众数一组数中出现次数最多的数;在频率分布直方图中, 我们取最高的那个小长方形横坐标的中点。中位数当一组数有奇数个时等于中间的数,当有偶数个时等于中间两数的平均数;在频率分布直方图中,是使图形左右两边面积相等的线所在的横坐标。平均数将所有数相加再除以这组数的个数;在频率分布直方图中,等于每个小长方形的面积乘以其底边中点的横坐标的和。2、标准差标准差是样本数据到平均数的一种平均距离,一般用s 表示。3、思考探究:1、标准

33、差的大小和数据的离散程度有什么关系?2、标准差的取值范围是什么?标准差为的样本数据有什么特点?答: 1显然,标准差较大,数据的离散程度较大;标准差较小,数据的离散程度较小。2从标准差的定义和计算公式都可以得出:0s。当0s时,意味着所有的样本数据都等于样本平均数。4、方差在刻画样本数据的分散程度上,方差和标准差是一样的,但在解决实际问题时,一般多采用标准差。5、在某项体育比赛中,七位裁判为一选手打出的分数如下: 90 89 90 95 93 94 93 去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为A92 , 2 (B) 92 , 2.8 (C) 93 , 2 (D) 93 , 2

34、.8 【答案】 B 【解析】由题意知,所剩数据为90,90, 93,94,93,所以其平均值为90+1(343)5=92;方差为2221(22122 )52.8 ,故选 B。6、为了调查某厂工人生产某种产品的能力,随机抽查了20 位工人某天生产该产品的数量. 产品数量的分组区间为由此得到频率分布直方图如图3,则这 20 名工人中一天生产该产品数量在的人数是 . 222121 ()()()nsxxxxxxn2222121 ()()()nsxxxxxxn55,65 , 65,75 , 75,8545,5585,9555,75精选学习资料 - - - - - - - - - 名师归纳总结 - - -

35、 - - - -第 19 页,共 27 页/27 20 (2) 这 20 名工人中一天生产该产品数量的中位数 . (3) 这 20 名工人中一天生产该产品数量的平均数 . 649005.0801.07025.0604 .0502.0)3(5 .625.004.0)552 .02132010025.01004.01、()、()、(解:(xx点评:在直方图中估计中位数、平均数。2. 3变量间的相关关系1、相关关系:自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系,叫做相关关系。【说明】函数关系是一种非常确定的关系,而相关关系是一种非确定性关系。2、散点图在平面直角坐标系中,表示具有

36、相关关系的两个变量的一组数据图形称为散点图。3、线性相关、回归直线方程和最小二乘法如果散点图中的点的分布,从整体上看大致在一条直线附近,则称这两个变量之间具有线性相关关系,这条直线叫做回归直线。我们所画的回归直线应该使散点图中的各点在整体上尽可能的与其接近。051015202530354020253035404550556065年龄脂肪含量精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 20 页,共 27 页/27 21 设所求的直线方程为y ?=bx+a,其中a、b 是待定系数。则y ?i=bxi+a i=1 , 2, n. 于是得到各个偏差 y

37、i y ?i =yi bxi+a i=1 ,2, n显见,偏差yi y ?i 的符号有正有负,假设将它们相加会造成相互抵消,所以它们的和不能代表几个点与相应直线在整体上的接近程度,故采用n 个偏差的平方和Q= y1bx1a2+y2bx2a2+ynbxna2 表示 n 个点与相应直线在整体上的接近程度。记 Q=niiiabxy12)(这样,问题就归结为:当a、b 取什么值时Q最小, a、b 的值由下面的公式给出:.,)()(1221121xbyaxnxyxnyxxxyyxxbniiniiiniiniii其中x=n1niix1,y=n1niiy1,a 为回归方程的斜率,b 为截距。求回归直线,使得

38、样本数据的点到它的距离的平方和最小的方法叫最小二乘法。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 21 页,共 27 页/27 22 第三章:概率3.1.1. 随机事件的概率1、在条件S下,一定会发生的事件,叫做相对于条件S的必然事件 . 2、在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件3、在条件S下,可能发生也可能不发生的事件,叫做相对于条件S的随机事件 . 4、随机事件A 在大量重复试验中发生的频率fn(A) 趋于稳定,在某个常数附近摆动,那我们就可以用这个常数来度量事件A发生的可能性的大小,并把这个常数叫做事件A发生的概率

39、,记作P A. 5、判断以下事件哪些是必然事件,哪些是不可能事件,哪些是随机事件?1如果 ab,那么 a 一 b0;2在标准大气压下且温度低于0C时,冰融化;3从分别标有数字l , 2,3,4,5 的 5 张标签中任取一张,得到4 号签 ; 4某机在 1 分钟内收到2 次呼叫;5手电筒的的电池没电,灯泡发亮;6随机选取一个实数x,得 |x| 0. 3. 1.2概率的意义1、概率是反映随机事件发生的可能性大小的一个数据,概率与频率之间有什么联系和区别?它们的取值范围如何?联系:概率是频率的稳定值;区别:频率具有随机性,概率是一个确定的数;范围:0 ,1. 2、遗传机理中的统计规律在遗传学中有以下

40、原理:1纯黄色和纯绿色的豌豆均由两个特征因子组成,下一代是从父母辈中各随机地选取一个特征组成自己的两个特征. 2用符号AA代表纯黄色豌豆的两个特征,符号BB代表纯绿色豌豆的两个特征. 3当这两种豌豆杂交时,第一年收获的豌豆特征为:AB.把第一代杂交豌豆再种下时,第二年收获的豌豆特征为: AA,AB,BB. 4对于豌豆的颜色来说A是显性因子,B是隐性因子 . 当显性因子与隐性因子组合时,表现显性因子的特性,即AA ,AB都呈黄色;当两个隐性因子组合时才表现隐性因子的特性,即BB呈绿色在第二代中AA ,AB ,BB出现的概率分别是多少?黄色豌豆与绿色豌豆的数量比约为多少?PAA =0.5 0.5=

41、0.25 pBB =0.5 0.5=0.25 PAB =1-0.25-0.25=0.5 黄色豌豆 (AA,AB)绿色豌豆 (BB) 31 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 22 页,共 27 页/27 23 3. 1.3概率的基本性质1、如果当事件A发生时,事件B一定发生,则BA ( 或 AB ) ;任何事件都包含不可能事件. 2、假设 BA,且 AB,则称事件A与事件 B相等,记作A=B. 3、当且仅当事件A发生或事件B发生时, 事件 C发生, 则称事件C为事件 A与事件 B的并事件 ( 或和事件 ) ,记作 C=AB(或 A+B)

42、. 4、假设事件A与事件 B互斥,则A B发生的频数等于事件A发生的频数与事件B发生的频数之和,且 PAB PA P B ,这就是概率的加法公式. 5、假设事件A与事件 B互为对立事件,则PA P B 1. 6、如果事件A与事件 B互斥, PA PB 1. 7、某射手进行一次射击,试判断以下事件哪些是互斥事件?哪些是对立事件?事件 A:命中环数大于7 环;事件 B:命中环数为10 环;事件 C:命中环数小于6 环;事件 D:命中环数为6、 7、8、9、10 环事件 A与事件 C互斥,事件B与事件 C互斥,事件C与事件 D互斥且对立 . 8 已知盒子中有散落的棋子15 粒,其中 6 粒是黑子,

43、9 粒是白子, 已知从中取出2 粒都是黑子的概率是71,从中取出2 粒都是白子的概率是3512,现从中任意取出2 粒恰好是同一色的概率是多少?解:从盒子中任意取出2 粒恰好是同一色的概率恰为取2 粒白子的概率与2 粒黑子的概率的和,即为71+3512=3517精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 23 页,共 27 页/27 24 3. 2.1古典概型1、 1试验中有可能出现的基本领件只有有限个;2每个基本领件出现的可能性相等,这有我们将具有这两个特点的概率模型称为古典概率模型2、同时掷两个骰子,计算:1一共有多少种不同的结果?2其中向上

44、的点数之和是5 的结果有多少种?3向上的点数之和是5 的概率是多少?解: 1掷一个骰子的结果有6 种。把两个骰子标上记号1,2 以便区分,由于1 号投骰子的每一个结果都可与 2 号骰子的任意一个结果配对,组成同时掷两个骰子的一个结果,因此同时掷两个骰子的结果共有 36 种。2在上面的所有结果中,向上点数和为5 的结果有如下4 种1,4 , 2,3 , 3,2 , 4,1 3由古典概型概率计算公式得 P “向上点数之和为5” =4/36=1/9 点评:通过此题理解掷两颗骰子共有36 种结果3、一枚骰子抛两次,第一次的点数记为m ,第二次的点数记为n ,计算 m-n2 的概率。4、一个盒子里装有标

45、号为1,2 ,3,4,5的 5 张标签, 根据以下条件求两张标签上的数字为相邻整数的概率:标签的选取是无放回的:标签的选取是有放回的:精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 24 页,共 27 页/27 25 3. 2.2古典概型及随机数的产生1、古典概型的概率计算公式:PA =总的基本事件个数包含的基本事件个数A2、从含有两件正品a1,a2 和一件次品b1 的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率。解:每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本领件有6 个,即 a

46、1,a2和, a1,b2 , a2,a1 , a2,b1 , b1,a1 , b2,a2 。其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2 次取出的产用A表示“取出的两种中,恰好有一件次品”这一事件,则 A= a1, b1 , a2,b1 , b1,a1 , b1,a2 事件 A由 4 个基本领件组成,因而,PA=64=32。3、现有一批产品共有10 件,其中8 件为正品, 2 件为次品:1如果从中取出一件,然后放回,再取一件,求连续3 次取出的都是正品的概率;2如果从中一次取3 件,求 3 件都是正品的概率分析: 1为返回抽样; 2为不返回抽样解: 1有放回地抽取3 次,按抽

47、取顺序x,y,z 记录结果,则x,y,z都有 10 种可能,所以试验结果有 101010=103 种; 设事件 A为“连续 3 次都取正品” ,则包含的基本领件共有888=83 种,因此, P(A)= 33108=0.512 2解法 1:可以看作不放回抽样3 次,顺序不同,基本领件不同,按抽取顺序记录x,y,z ,则 x有 10 种可能, y 有 9 种可能, z 有 8 种可能,所以试验的所有结果为109 8=720 种设事件B为“3 件都是正品” ,则事件B包含的基本领件总数为876=336, 所以 P(B)= 7203360.467 解法 2:可以看作不放回3 次无顺序抽样,先按抽取顺序

48、x,y,z记录结果,则x 有 10 种可能, y有 9 种可能, z 有 8 种可能,但x,y,z , x,z,y , y,x,z , y,z,x , z,x,y , z,y,x ,是相同的, 所以试验的所有结果有10986=120,按同样的方法, 事件 B包含的基本领件个数为8766=56,因此 P(B)= 12056 0.467 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 25 页,共 27 页/27 26 3. 3.1几何概型1、如果每个事件发生的概率只与构成该事件区域的长度面积或体积成比例,则称这样的概率模型为几何概率模型,简称为几何概

49、型在几何概型中,事件A的概率的计算公式如下:2、假设你家订了一份报纸,送报人可能在早上6:307:30 之间把报纸送到你家,而你父亲离开家去工作的时间在早上7:008:00 之间,问你父亲在离开家前能得到报纸称为事件A的概率是多少如图,方形区域内任何一点的横坐标表示送报人送到报纸的时间,纵坐标表示父亲离开家去工作的时间假设随机试验落在方形内任一点是等可能的,所以符合几何概型的条件根据题意,只要点落到阴影部分,就表示父亲在离开家前能得到报纸,即事件A发生,所以3、如图,在正方形中随机撒一大把豆子,计算落在圆中的豆子数与落在正方形中的豆子数之比,并以此估计圆周率的值解:随机撒一把豆子,每个豆子落在

50、正方形内任何一点是等可能的,落在每个区域的豆子数与这个区域的面积近似成正比,即假设正方形的边长为2,则精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 26 页,共 27 页/27 27 由于落在每个区域的豆子数是可以数出来的,所以这样就得到了 的近似值3. 3.2几何概型及均匀随机数的产生1、 1几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度面积或体积成比例,则称这样的概率模型为几何概率模型;2几何概型的概率公式:PA=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件 A;3几何概型的特点:1试验中所有可能

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 技术总结

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁