2022年数学北京课改版七年级下二元一次方程和它的解 .pdf

上传人:C****o 文档编号:32425618 上传时间:2022-08-09 格式:PDF 页数:6 大小:94.71KB
返回 下载 相关 举报
2022年数学北京课改版七年级下二元一次方程和它的解 .pdf_第1页
第1页 / 共6页
2022年数学北京课改版七年级下二元一次方程和它的解 .pdf_第2页
第2页 / 共6页
点击查看更多>>
资源描述

《2022年数学北京课改版七年级下二元一次方程和它的解 .pdf》由会员分享,可在线阅读,更多相关《2022年数学北京课改版七年级下二元一次方程和它的解 .pdf(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、二元一次方程和它的组同步练习【主干知识】认真预习教材,尝试完成下列各题:1含有 _个未知数,并且含有_都是一次的方程叫做二元一次方程2下列方程中,是二元一次方程的有()个2x-3yy=1 12x+2y=3 x2+x=2 x2+y2=5 5(x+y) =7(x-y)xy=-1 A1 B2 C3 D4 3使二元一次方程_的值,叫做二元一次方程的一个解4你能找出二元一次方程,2x-y=3 的一个解吗?5若 x=4,y=1 是二元一次方程mx-2y=4 的解,则m=_点击思维1你还记得“什么是方程”“什么是一元一次方程”吗?类比着来学习二元一次方程2方程1x+y=5 及 xy=3 中 x、y 两个未知

2、数的指数都是1,那这样的方程是不是二元一次方程呢?3一般地,一个二元一次方程有多少个解?【典例分析】例 1下列方程中,哪些是二元一次方程,哪些不是?(1)2x-3y+4=0 (2)x+3y-2z=4 (3)x2-y2=1 (4)324xy=1 (5)x=3y-z (6)3ab=7 思路分析: 要想判断出一个方程是不是二元一次方程,必须紧卡二元一次方程的定义,即同时满足条件(1)含有两个未知数, (2)含有未知数的项的次数都是1?的方程才叫做二元一次方程 ?并且注意“含有未知数的项的次数”不是“含有未知数的次数”这一点解: (1) (4)是二元一次方程, (2) (3) (5) (6)都不是二元

3、一次方程方法点拨 :做这种类型的题时,一定要分清方程中含有未知数的项的次数?像本例(5)中3y这一项的次数不是1,它是一个分式,整项的次数应是-1, ?故不是二元一次方程;还有( 6)中 ab 这一项,它是一个单项式,它的次数应是a、b 两字母的指数的和,?故 ab 的次数是 2,不是 1,故也不是二元一次方程记住这两个易出错的地方例 2对于下列每个方程,各求出它的一个正整数解(1)x+3y=6 (2)3x+2y=20 思路分析:(1)先将方程x+3y=6 变形为 x=6-3y,要使方程有正整数解,y 只能取 1,?才能保证x 是正整数于是方程x+3y=6 的正整数解可求(2)先将方程3x+2

4、y=20,变形为 y=10-32x,要使方程有正整数解,只需x 取正整数2、4、6,y 即有正整数值于是方程3x+2y=20 的正整数解可求解: (1)将方程x+3y=6 变形,得 x=6-3y 令 y=1 时,则 x=6-31=3 故方程 x+3y=6 的正整数解为31xy;(2)将方程3x+2y=20 变形,得y=10-32x 令 x=2 时, y=7 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 6 页故方程 3x+2y=20 的一个正整数解是27xy方法点拨: 解决本题的关键是先将两方程变形,即把其中的一个未知数用含有另一个未

5、知数的代数式来表示这是一项基本项,一定要表示对,?这也是对以后学二元一次方程组的解法作准备的【基础能力训练】1下列方程中:3x-2=y mn=8 x+y=-6 1x-4y=0 3a=2 其中是二元一次方程的是_(只填序号) 2若 xm+2y|n|=5 是二元一次方程,则m=_, n=_3若 3xm+1-5yn-3=16 是关于 x、y 的二元一次方程,则m=_,n=_4下列方程中,是二元一次方程的是()A2x+y=-3 B3a-2=46 C23yx=6 D26=3a 5根据下列语句,设适当的未知数,列出二元一次方程:(1)甲数比乙数的3 倍少 7;(2)甲数的2 倍与乙数的5 倍的和是 445

6、;(3)甲数的15%与乙数的23%的差是 11;(4)甲数与 乙数的和的2 倍比乙数与甲数差的13多 0.256请写出一组x、y 的值,使它满足方程x+2y=67下列四对数值中,满足二元一次方程4x-y=5 的是()A1111.1111xxxxBCDyyyy8下列方程中,以x 表示 y 的是()Ax+y=8 Bx=32y-1 C2y=5x+7 Dy=2x-1 9下列三对数值135,424xxxyyy满足方程x-2y=-7 的是 _10在方程2x-3y=6 中,用含x 的代数式表示y 为: _11已知 x=-2 是方程 2x+m-4=0 的一个解,则m=_12在方程12x-3y=8 中,用含x

7、的代数或表示y,正确的是()Ay=4161616.3366xxxxB yC yD y13已知12xy是二元一次方程3x-ky=2 的一个解,则k=_14在二元一次方程x-3y=5 中,若 x=0,则 y=_;若 x=10,则 y=_,若 y=?-3,由 x=_15任何一个二元一次方程都有()个解A一B两C三D无数精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 6 页16下列方程中,其中一个解为02xy的是()Ax+y=-2 Bx-y=-2 C xy=-2 Dx-2y=2 17二元一次方程12x-y=3 中,若用x 的代数式表示y,则 y

8、 =_【综合创新训练】18自编一个二元一次方程,使它的一组解是23xy19已知 2.12x+3.13y=60,则 21.2x+31.3y-300=_20若12xy是方程, 2y+3mx=1 的解,则m 的值是多少?21求方程2x+y=15 的非负整数解22下列各个图是由若干个花盆组成的形如三角形的图案,每条边(?包括两个顶点)有n( n1)盆花,每个图案花盆的总数是s按此规律推断,以s、 n 为未知数的二元一次方程是_23先用一个未知数的代数式表示另一个未知数,然后再求出下列每个方程的三组解:(1)2(x-y)=5 (2) 4x+2y=x-y+1 24求下列图中y(或 x)的值:25一根长 2

9、0 米的钢管, 刚好截成若干根长3 米和 2 米的规格的钢管,?则共几种不同的截法?精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 6 页【探究学习 】应用“小思想”解决“大问题”从前,法国有个聪明的孩子,人人都赞美他,称他为神童一次,国王在后花园里散步,忽然指着水池问身边的大臣:“池中有几桶水?”大臣们都被这古怪的问题问住了,你看看我,我看看你,答不上来国王很扫兴,说:“给你们三天的时间,谁能答出来谁就有赏”三天过去了,大臣们还是答不上来,这时,有位大臣奏道:“城东有个孩子,人称神童,要不叫他来试一试 ”国王想,全城都称赞这个孩子,这

10、次就考考他于是,国王下令宣小孩进宫孩子听了国王的问题,眼睛眨巴了两下,随口答道:“如果桶和水池一样大,就是一桶;如果桶比池小一半,就是两桶水;如果桶是水池的三分之一,就是三桶水;如果”还没等小孩说完,国王便连连称赞道:“答得好,答得妙!真是聪明过人,胜过我的大臣”大臣们听了都很惭愧细品上述故事, 小孩的确答得妙,妙在一个众人认为不易回答的问题,小孩能分情况巧妙地答出 他这种思考问题的方法,在我们今天看来,实质上就是数学上常用的分类讨论的思想方法所谓分类讨论的思想:首先根据题目要求确定分类对象;其次针对对象选择分类标准进行合理分类; 最后对分类合并归纳,作出综合性结论 分类讨论是一种重要的数学思

11、想方法,对培养思维的周密性大有好处现在我们用分类讨论的思想方法,解答一个二元一次方程的问题例:方程 x+2y=7 有几组解,求出其正整数解解:原方程有无数组解原方程可变形为y=72x因为 y 是正整数,所以y0 即72x0 解这个不等式,得x7 所以 x 取 0 x7 的整数当 x=1 时, y=3;当 x=2 时, y=52;当 x=3 时, y=2;当 x=4 时, y=32;当 x=5 时, y=1;当 x=6 时, y=12所以正整数解有135,321xxxyyy由此题可以看出,分类思想首先是把可能出现的情况都考虑到,其次把不符合条件的去掉,能合并的合并,然后做出答案答案 : 【主干知

12、识】1两未知数的项的次数2B 3左右两边的值相等的一对未知数4能例如21xy5m=32【点击思维】精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 6 页1含有未知数的等式叫做方程含有一个未知数,?并且未知数的项的次数都是一次的,这样的方程, 叫做一元一次方程二元一次方程的定义和一元一次方程的定义差不多,但要注意它们的区别:二元一次方程含有两个未知数,而一元一次方程只含有一个未知数;一个二元一次方程有无数个解,而一元一次方程只有一个解2不是像方程1x+y=5 中,1x这一项的次数不是1 次的,应是 -1 次的 xy=3 中, xy?这一项

13、它是一个单项式,单项式的次数等于单项式中各个字母的指数的和,因此xy 应是二次的,所以它们都不是二元一次方程3无数个解比如二元一次方程3x-2y=11 的一些解是01015,11194222xxxxyyyy【基础能力训练】121 1 30 4 4A 5 (1)设乙数为x,甲数为y,则 3x-y=7;( 2)设甲数为x,乙数为y,则 2x+5y=445;( 3)设甲数为x,乙数为y,则 15%x-23%y=11;( 4)设甲数为x,乙数为y,则 2(x+y)-13(y-x)=025622xy等等,答案不唯一7D 8 D 932xy10y=13(2x-6)118 12 C 131214-5353-

14、4 15D 16A 17y=12x-3 【综合创新训练】18 像 x+y=1,x-y=5等等19300 解析:把2.12x+3.13y=60 两边都乘以10 得 21.2x+31.3y=?600, ?所以 21.2x+31.3y-300=600-300=30020由二元一次方程的解的定义,把12xy代入 2y+3mx=1 得 4+3m=1,解得 m=-12101234567,15131197531xxxxxxxxyyyyyyyy22s=3n-3 解析:若一边上有 n 盆,则三条边上有3n 盆, ?但在三角形的三个顶点处多算了一次,故为3n-323 (1)y=x-52解是051,253022xxxyyy等(2)x=13-y 解是1011,331013xxxyyy等24精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 6 页解析:可将2x-y=3 变形为 y=2x-3 再求较为简单25设截得的3 米的钢管有x 根, 2 米的钢管有y 根,则 3x+2y=20,根据题意,需求3x+2y=20 有几组正整数解的问题,可求出 3x+2y=20,共有 3 组正整数解,分别是246,741xxxyyy,所以共有3 种不同的截法精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 6 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁