四中中考复习数理化语英习集 图形的相似 知识讲解提高.doc

上传人:蓝**** 文档编号:32195514 上传时间:2022-08-08 格式:DOC 页数:13 大小:647KB
返回 下载 相关 举报
四中中考复习数理化语英习集 图形的相似 知识讲解提高.doc_第1页
第1页 / 共13页
亲,该文档总共13页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《四中中考复习数理化语英习集 图形的相似 知识讲解提高.doc》由会员分享,可在线阅读,更多相关《四中中考复习数理化语英习集 图形的相似 知识讲解提高.doc(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、中考总复习:图形的相似-知识讲解(提高)撰稿:赵炜 审稿:杜少波【考纲要求】1.了解线段的比、成比例线段、黄金分割、相似图形有关概念及性质2.探索并掌握三角形相似的性质及条件,并能利用相似三角形的性质解决简单的实际问题3.掌握图形位似的概念,能用位似的性质将一个图形放大或缩小4.掌握用坐标表示图形的位置与变换,在给定的坐标系中,会根据坐标描出点的位置或由点的位置写出它的坐标,灵活运用不同方式确定物体的位置【知识网络】【考点梳理】考点一、比例线段1. 比例线段的相关概念如果选用同一长度单位量得两条线段a,b的长度分别为m,n,那么就说这两条线段的比是,或写成a:b=m:n.在两条线段的比a:b中

2、,a叫做比的前项,b叫做比的后项.在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段.若四条a,b,c,d满足或a:b=c:d,那么a,b,c,d叫做组成比例的项,线段a,d叫做比例外项,线段b,c叫做比例内项.如果作为比例内项的是两条相同的线段,即或a:b=b:c,那么线段b叫做线段a,c的比例中项.2、比例的性质(1)基本性质:a:b=c:dad=bc a:b=b:c.(2)更比性质(交换比例的内项或外项) (交换内项) (交换外项) (同时交换内项和外项)(3)反比性质(交换比的前项、后项):(4)合比性质:(5)等比性质:3、黄金分割把线

3、段AB分成两条线段AC,BC(ACBC),并且使AC是AB和BC的比例中项,叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点,其中AC=AB0.618AB.考点二、相似图形1.相似图形:我们把形状相同的图形叫做相似图形.也就是说:两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到的.(全等是特殊的相似图形).2.相似多边形:对应角相等,对应边的比相等的两个多边形叫做相似多边形.3.相似多边形的性质:相似多边形的对应角相等,对应边成的比相等.相似多边形的周长的比等于相似比,相似多边形的面积的比等于相似比的平方.4.相似三角形的定义:形状相同的三角形是相似三角形.5.相似三角形的性质

4、:(1)相似三角形的对应角相等,对应边的比相等.(2)相似三角形对应边上的高的比相等,对应边上的中线的比相等,对应角的角平分线的比相等,都等于相似比.(3)相似三角形的周长的比等于相似比,面积的比等于相似比的平方.【要点诠释】结合两个图形相似,得出对应角相等,对应边的比相等,这样可以由题中已知条件求得其它角的度数和线段的长.对于复杂的图形,采用将部分需要的图形(或基本图形)“抽”出来的办法处理.6.相似三角形的判定:(1)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似;(2)如果两个三角形的三组对应边的比相等,那么这两个三角形相似;(3)如果两个三角形的两组对应边的比相等,

5、并且相应的夹角相等,那么这两个三角形相似;(4)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.(5)如果一个直角三角形的斜边和一条直角边与另一个三角形的斜边和一条直角边的比对应相 等,那么这两个三角形相似.考点三、位似图形1.位似图形的定义:两个多边形不仅相似,而且对应顶点的连线相交于一点,不经过交点的对应边互相平行,像这样的两个图形叫做位似图形,这个点叫位似中心.2.位似图形的分类:(1)外位似:位似中心在连接两个对应点的线段之外.(2)内位似:位似中心在连接两个对应点的线段上.3.位似图形的性质位似图形的对应点和位似中心在同一条直线上;位似图形的对应点到位似中

6、心的距离之比等于相似比;位似图形中不经过位似中心的对应线段平行.【要点诠释】位似图形是一种特殊的相似图形,而相似图形未必能构成位似图形.4.作位似图形的步骤第一步:在原图上找若干个关键点,并任取一点作为位似中心;第二步:作位似中心与各关键点连线;第三步:在连线上取关键点的对应点,使之满足放缩比例;第四步:顺次连接截取点.【要点诠释】在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐 标的比等于k或-k.【典型例题】类型一、比例线段1. 已知三个数1,2,请你再添上一个(只填一个)数, 使它们能构成一个比例式,则这个数是_.分析:这是一道开放型试题,由于题中没

7、有告知构成比例的各数顺序, 故应考虑各种可能位置.【思路点拨】这是一道开放型试题,由于题中没有告知构成比例的各数顺序, 故应考虑各种可能位置.【答案与解析】根据比例式的概念,可得:12=;21=212=【总结升华】要构成一个比例式,根据比例式的概念:如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段举一反三: 【变式】将一个菱形放在2倍的放大镜下,则下列说法不正确的是( )A菱形的各角扩大为原来的2倍 B菱形的边长扩大为原来的2倍C菱形的对角线扩大为原来的2倍 D菱形的面积扩大为原来的4倍【答案】A.类型二、相似图形【高清课堂:图形的相似 考点10 (3)】2. 已知:如图,

8、四边形ABCD是菱形,A=60,直线EF经过点C,分别交AB、AD的延长线于E、F两点,连接ED、FB相交于点H如果菱形的边长是3,DF=2,求BE的长;请你在图中找到一个与BDF相似的三角形,并说明理由【思路点拨】(1)可证EBC与EAF相似,通过相似三角形的性质可得出DE的长(2)根据相似三角形的判定定理可得,找出条件即可【答案与解析】(1)四边形ABCD是菱形,且边长为3,AB=BC=AD=3,BCADEBCEAFDF=2,AD=3,AF=5BE=(2)EBD与BDF相似 证明:四边形ABCD是菱形,BCAD,CDAB, 又AB=AD,A=60,ABD是等边三角形,BD=AB=AD,AB

9、D=ADB=60,EBD=BDF=120EBDBDF【总结升华】此题考查了相似三角形的判定和性质,如果两个三角形的三组对应边的比相等,那么这两个三角形相似;如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;如果两个三角形的两个对应角相等,那么这两个三角形相似相似三角形的对应边的比相等,对应角相等3(2011广东汕头)如图(1),ABC与EFD为等腰直角三角形,AC与DE重合,AB=EF=9,BACDEF90,固定ABC,将EFD绕点A 顺时针旋转,当DF边与AB边重合时,旋转中止.不考虑旋转开始和结束时重合的情况,设DE、DF(或它们的延长线)分别交BC(或它的延长线)于G

10、、H点,如图(2).(1)问:始终与AGC相似的三角形有 及 ;(2)设CGx,BHy,求y关于x的函数关系式(只要求根据2的情况说明理由);(3)问:当x为何值时,AGH是等腰三角形?【思路点拨】(1)根据ABC与EFD为等腰直角三角形,AC与DE重合,利用相似三角形的判定定理即可得出结论(2)由AGCHAB,利用其对应边成比例列出关于x、y的关系式:9:y=x:9即可(3)此题要采用分类讨论的思想,当CGBC时,当CG=BC时,当CGBC时分别得出即可【答案与解析】(1)ABC与EFD为等腰直角三角形,AC与DE重合,H+HAC=45,HAC+CAG=45,H=CAG,ACG=B=45,A

11、GCHAB,同理可得出:始终与AGC相似的三角形有HAB和HGA;故答案为:HAB和HGA(2)AGCHAB,AC:HB=GC:AB,即9:y=x:9,y=(x0),AB=AC=9,BAC=90,BC=答:y关于x的函数关系式为y=(x0) (3)当CGBC时,GAC=HHAG,ACCH,AGAC,AGCHGH,又AHAG,AHGH,此时,AGH不可能是等腰三角形,当CG=BC时,G为BC的中点,H与C重合,AGH是等腰三角形,此时,GC=,即x=,当CGBC时,由(1)AGCHGA,所以,若AGH必是等腰三角形,只可能存在AG=AH,若AG=AH,则AC=CG,此时x=9,如图(3),当CG

12、=BC时,注意:DF才旋转到与BC垂直的位置,此时B,E,G重合,AGH=GAH=45,所以AGH为等腰三角形,所以CG=综上所述,当x=9或x=或时,AGH是等腰三角形【总结升华】此题主要考查学生对相似三角形的判定与性质,等腰三角形的性质,等腰直角三角形的性质,旋转的性质等知识点的理解和掌握,综合性较强,难易程度适中,是一道很典型的题目举一反三:【变式】(2011湖南怀化)如图8,ABC,是一张锐角三角形的硬纸片,AD是边BC上的高,BC=40cm,AD=30cm,从这张硬纸片上剪下一个长HG是宽HE的2倍的矩形EFGH,使它的一边EF在BC上,顶点G、H分别在AC,AB上,AD与HG的交点

13、为M.(1) 求证:(2) 求这个矩形EFGH的周长.【答案】(1)证明:四边形EFGH为矩形,EFGH,AHG=ABC,又HAG=BAC,AHGABC,;(2)解:由(1)得:设HE=xcm,MD=HE=x,AD=30,AM=30-x,HG=2HE,HG=2x,AM=AD-DM=AD-HE=30-x(cm),可得,解得,x=12,2x=24所以矩形EFGH的周长为:2(12+24)=72(cm)答:矩形EFGH的周长为72cm4. 如图,在平面直角坐标系中,O为坐标原点,点A的坐标为,直线BC经过点,将四边形OABC绕点O按顺时针方向旋转度得到四边形,此时直线、直线分别与直线BC相交于点P、

14、Q(1)四边形OABC的形状是 ,当时,的值是 ;(2)如图1,当四边形的顶点落在轴正半轴时,求的值;来源:学科网ZXXK如图2,当四边形的顶点落在直线上时,求的面积(3)在四边形OABC旋转过程中,当时,是否存在这样的点P和点Q,使?若存在,请直接写出点P的坐标;若不存在,请说明理由 【思路点拨】(1)根据有一个角是直角的平行四边形即可得出四边形OABC是矩形,当=90时,可知,根据比例的性质得出;(2)由COPAOB,根据相似三角形对应边成比例得出CP=,同理由BCQBCO,得出CQ=3,则BQ可求;先利用AAS证明OCPBAP,得出OP=BP,即可求出;(3)当点P位于点B的右侧时,过点

15、Q画QHOA于H,连接OQ,则QH=OC=OC,根据SPOQ=SPOQ,即可证明出PQ=OP;设BP=x,在RtPCO中,运用勾股定理,得出x=,进而求得点P的坐标【答案与解析】(1)O为坐标原点,点A的坐标为(-8,0),直线BC经过点B(-8,6),C(0,6),OA=BC=8,OC=AB=6, 四边形OABC的形状是矩形;当=90时,P与C重合,如图,根据题意,得,则; (2)如图1,POC=BOA,PCO=OAB=90,COPAOB,即,CP=,BP=BCCP=.同理BCQBCO,即,CQ=3,BQ=BC+CQ=11,; 图2,在OCP和BAP中,OCPBAP(AAS)OP=BP设BP

16、=x,在RtOCP中,(8-x)2+62=x2,解得x=SOPB=;(3)过点Q作QHOA于H,连接OQ,则QH=OC=OC,SPOQ=PQOC,SPOQ=OPQH,PQ=OP设BP=x,BP=BQ,BQ=2x,如图4,当点P在点B左侧时,OP=PQ=BQ+BP=3x,在RtPCO中,(8+x)2+62=(3x)2,解得x1=1+,x2=1-(不符实际,舍去)PC=BC+BP=9+,P1(-9-,6) 如图5,当点P在点B右侧时,OP=PQ=BQ-BP=x,PC=8-x在RtPCO中,(8-x)2+62=x2,解得x=PC=BC-BP=8-=,P2(-,6),综上可知,存在点P1(-9-,6)

17、,P2(-,6),使BP=BQ【总结升华】本题考查了旋转的性质,矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理特别注意在旋转的过程中的对应线段相等,能够用一个未知数表示同一个直角三角形的未知边,根据勾股定理列方程求解【高清课堂:图形的相似 考点10 (5)】5如图所示,E是正方形ABCD的边AB上的动点, EFDE交BC于点F求证:ADEBEF;设正方形的边长为4, AE=,BF=当取什么值时,有最大值?并求出这个最大值 【思路点拨】本题涉及到的考点有相似三角形的判定与性质,二次函数的性质,二次函数的最值以及正方形的性质【答案与解析】(1)证明:ABCD是正方形,DAE=

18、EBF=90,ADE+AED=90,又EFDE,AED+BEF=90,ADE=BEF,ADEBEF由(1)ADEBEF,AD=4,BE=4-x得:,即:, 得:y=(0x4)(3)解:当x=2时,y有最大值,y的最大值为1该函数图象在对称轴x=2的左侧部分是上升的,右侧部分是下降的【总结升华】本题考查了相似三角形的判定和性质以及二次函数的综合应用确定个二次函数的最值是,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标;当自变量取某个范围时,要分别求出顶点和函数端点处的函数值,比较这些函数值,从而获得最值类型三、位似图形6 . 如图,用下面的方法可以画出AOB的“内接

19、等边三角形”,阅读后证明相应的问题.画法:(1)在AOB内画等边CDE,使点C在OA上,点D在OB上;(2)连结OE并延长,交AB于点E,过E作ECEC,交OA于点C,作EDED,交OB于点D;(3)连结CD,则CDE是AOB的内接三角形.请判断CDE是否是等边三角形,并说明理由. 【思路点拨】由画法可知,CDE和CDE是位似图形.【答案与解析】CDE是等边三角形. 证明:CECE,OECOEC, ,CED=CED=60, CDECDE.CDE为等边三角形, CDE为等边三角形.【总结升华】重点考查阅读理解能力和知识的迁移能力.举一反三:【变式】如图,直角坐标系中ABC的A、B、C三点坐标为A(7,1)、B(8,2)、C(9,0).请在图中画出ABC的一个以点P (12,0)为位似中心,相似比为3的位似图形(要求与ABC同在 P点一侧);【答案】连接位似中心P和ABC的各顶点,并延长,使PA=3PA,PB=3PB,PC=3PC连接、,则得到所要画的图形.画出,如图所示.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁