《2022年题课教案 2.pdf》由会员分享,可在线阅读,更多相关《2022年题课教案 2.pdf(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、学习必备欢迎下载高等数学习题课作业(不定积分)答案1dxxxdxxxxxdxxx) 1(1)1)(1(113132333233Cxxx34354353. 2.ln211lnln1ln1ln1222Cxxxxdxdxxxdxxdxxxx3xxxxddxxxxsin)sin(sincos1Cxxsinln. 4xxdxxdxdxxxx1)1 (211Cx14. 5xdxxdxxxxdxxxx22)(1arcsin21arcsinarcsin.)(arcsin34arcsinarcsin223Cxxdx622)ln()ln()ln(ln1xxxxddxxxxCxxln1. 7dxxxxdxxx)11
2、11()1(122424Cxxxarctan3113. 82222244281)(11)(141) 1)(1(211dxxxxxdxdxxxCxxx222ar c t an4111ln81. 9dxxxxxdxxxdxxx) 1() 1(2) 1() 1() 1(1) 1( 2) 1() 1(100999810021002. Cxxx999897)1(901) 1(491)1(971101)(tantan211tantantan) 1(tancostancossincossin22244244xxdxxxdxxxdxdxxxxxCx)arctan(tan212. 11dxxxxdxxdxxxx
3、xdxxxcossin1sectancossincossincossin123223Cxxxxdxxdtanlntan21tantantantan2) 12dxxxxdxxxxdxxx)1secsec(tancos)sin1(sinsin1sin22Cxxxtansec. 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 4 页学习必备欢迎下载132212252122222)()()(91)1 (119121182xxdxxxxddxxxdxxxxdxxxx512arcsin9122xxx. 14dxxxxdxxxx212122. 令tx
4、x2,则222)1(4,12ttdtdxtx原式CxxCtdt2. (也可以令tx1)15dxxxxx)(33. 令tx6,则6tx,dttdx56原式CxxCttdtttttdt)1ln(6ln)1ln(ln6)111(6)1(66. 16dxex1. 令tex1, 则)1ln(2tx,122ttdtdx,原式CeeeCtttdtttdttxxx1111ln1211ln2)111(212222. 17dxxxxxxxxdxxxxxxx222)2(22112arcsin2arcsin.2arctan222arcsin)2()(21 (22arcsin222arcsin2212arcsin22C
5、xxxxxxdxxxxxdxxxxxdxxxxxx18xdxeedxxedxxexxxx2cos212)2cos1(21sin2. 而xdxexexexdxexexdxexxxxxx2cos42sin22cos2sin22cos2cos于是,,)2sin22(cos52cosCxxexdxexx所以,原式Cxxeexx)2sin22(cos102. 19)1()1ln(ln)1()1ln()1ln(2xxdxxxxxdxxdxdxxxx精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 4 页学习必备欢迎下载CxxCxxxxxdxxxxxx
6、)1ln()11 ()1ln(ln)1ln(ln)111()1ln(ln)20 xxdxxxxxddxxxx)1 (21)1(2ln)11(ln21)1(ln22222. .1ln41)1 (2ln)1ln(41ln21)1 ( 2ln)11(21)1 (2ln2222222CxxxxCxxxxdxxxxxx21dxxxxcos1sinxxdxxdxxdxxdxxcos1)cos1(2tancos1sincos2221)cos1ln(2cosln22tan)cos1ln(2tan2tanCxxxxxdxxxxCxxCxxxx2tan)cos1ln(2ln)cos1ln(2tan1. (其中2l
7、n1CC)22若函数)(xf有连续导数,且xxxf)1ln()(,求)(xf. 解: 由22)()(1ln)(xxxf,有22)1ln()(xxxf,所以.ar c t a n2)1l n (12)1l n ()1 (2)1l n ()1l n ()()(2222222Cxxxxdxxxdxxxxxxdxxxdxxfxf23若Cxdxxxfarcsin)(,求)(xfdx. 解: 所给等式两边对x求导,有211)(xxxf,于是211)(xxxf,所以.)1 (31)1(1211)(232222Cxxdxdxxxxfdx24若xxxfsin)(sin2,求dxxfxx)(1. 解: 由,sin
8、sinarcsinsin)(sin222xxxxxf得,arcsin)(xxxf于是dxxxxxxdxxxdxxfxx211112arcsin121arcsin)(1精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 4 页学习必备欢迎下载dxxxx1arcsin12Cxxx2arcsin12. 25已知函数)(xF是连续函数)(xf的一个原函数,当0 x时,)(xFxxf2sin)(2,且1)0(F,0)(xF,求)(xf. 解: 由)(xFxxf2sin)(2,即)(xF)4cos1(212sin)(2xxxF,有.214s i n8121)4c o s1(21)()()(212CxxdxxdxxFxFxF于是,.4sin41)(2CxxxF由1)0(F,得1C,再由0)(xF,有44s i n421)(xxxF,所以)()(xFxf44sin44cos1xxx. 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 4 页