高等数学函数的极值及其求法ppt课件.ppt

上传人:飞****2 文档编号:32160618 上传时间:2022-08-08 格式:PPT 页数:23 大小:335KB
返回 下载 相关 举报
高等数学函数的极值及其求法ppt课件.ppt_第1页
第1页 / 共23页
高等数学函数的极值及其求法ppt课件.ppt_第2页
第2页 / 共23页
点击查看更多>>
资源描述

《高等数学函数的极值及其求法ppt课件.ppt》由会员分享,可在线阅读,更多相关《高等数学函数的极值及其求法ppt课件.ppt(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物函数的极值及其求法函数的极值及其求法 由单调性的判定法则,结合函数的图形可知,由单调性的判定法则,结合函数的图形可知,曲线在升、降转折点处形成曲线在升、降转折点处形成“峰峰”、“谷谷”,函,函数在这些点处的函数值大于或小于两侧附近各点数在这些点处的函数值大于或小于两侧附近各点处的函数值。函数的这种性态以及这种点,无论处的函数值。函数的这种性态以及这种点,无论在理论上还是在实际应用上都具有重要的意义,在理论上还是在实际应用上都具有重要的意义,值得我们作一般性的讨论

2、。值得我们作一般性的讨论。采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物一、函数极值的定义一、函数极值的定义oxyab)(xfy 1x2x3x4x5x6xoxyoxy0 x0 x采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物.)()(,)()(,;)()(,)()(,),(,),()(000000000的一个极小值的一个极小值是函数是函数就称就称均成立均成立外外除了点除了点任何点任何点对于这邻域内的对于这邻域内的的一个邻

3、域的一个邻域如果存在着点如果存在着点的一个极大值的一个极大值是函数是函数就称就称均成立均成立外外除了点除了点任何点任何点对于这邻域内的对于这邻域内的的一个邻域的一个邻域如果存在着点如果存在着点内的一个点内的一个点是是内有定义内有定义在区间在区间设函数设函数xfxfxfxfxxxxfxfxfxfxxxbaxbaxf 定义定义函数的极大值与极小值统称为函数的极大值与极小值统称为极值极值,使函数取得使函数取得极值的点称为极值的点称为极值点极值点.采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物二、函数极值的求法二、

4、函数极值的求法 设设)(xf在点在点0 x处具有导数处具有导数, ,且且在在0 x处取得极值处取得极值, ,那末必定那末必定0)(0 xf. .定理定理1 1( (必要条件必要条件) )定义定义.)()0)(的驻点的驻点做函数做函数叫叫的实根的实根即方程即方程使导数为零的点使导数为零的点xfxf 注意注意:.,)(是是极极值值点点但但函函数数的的驻驻点点却却不不一一定定点点的的极极值值点点必必定定是是它它的的驻驻可可导导函函数数xf例如例如,3xy , 00 xy.0不不是是极极值值点点但但 x采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切

5、口面的圆度,保持熔接部位干净无污物注注这个结论又称为这个结论又称为Fermat定理定理如果一个可导函数在所论区间上没有驻点如果一个可导函数在所论区间上没有驻点 则此函数没有极值,此时导数不改变符号则此函数没有极值,此时导数不改变符号不可导点也可能是极值点不可导点也可能是极值点可疑极值点:可疑极值点:驻点、不可导点驻点、不可导点 可疑极值点是否是真正的极值点,还须进一步可疑极值点是否是真正的极值点,还须进一步判明。由单调性判定法则知,若可疑极值点的左、判明。由单调性判定法则知,若可疑极值点的左、右两侧邻近,导数分别保持一定的符号,则问题右两侧邻近,导数分别保持一定的符号,则问题即可得到解决。即可

6、得到解决。采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物( (1 1) )如如果果),(00 xxx 有有; 0)( xf而而),(00 xxx, , 有有0)( xf,则则)(xf在在0 x处处取取得得极极大大值值. .( (2 2) )如如果果),(00 xxx 有有; 0)( xf而而),(00 xxx 有有0)( xf,则则)(xf在在0 x处处取取得得极极小小值值. .( (3 3) )如如果果当当),(00 xxx 及及),(00 xxx时时, , )(xf符符号号相相同同, ,则则)(xf在在

7、0 x处处无无极极值值. .定理定理2(2(第一充分条件第一充分条件) )xyoxyo0 x0 x (是极值点情形是极值点情形)采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物xyoxyo0 x0 x 求极值的步骤求极值的步骤: :);()1(xf 求导数求导数;0)()2(的根的根求驻点,即方程求驻点,即方程 xf;,)()3(判断极值点判断极值点在驻点左右的正负号在驻点左右的正负号检查检查xf .)4(求求极极值值(不是极值点情形不是极值点情形)采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在

8、管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物例例1 1解解.593)(23的的极极值值求求出出函函数数 xxxxf963)(2 xxxf,令令0)( xf. 3, 121 xx得得驻驻点点列表讨论列表讨论x)1,( ), 3()3 , 1( 1 3)(xf )(xf 00 极大值极大值极小值极小值)3(f极小值极小值.22 )1( f极大值极大值,10 )3)(1(3 xx采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物593)(23 xxxxfMm图形如下图形如下采用PP管及配

9、件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物 设设)(xf在在0 x处具有二阶导数处具有二阶导数, ,且且0)(0 xf, , 0)(0 xf, , 那末那末(1)(1)当当0)(0 xf时时, , 函数函数)(xf在在0 x处取得极大值处取得极大值; ;(2)(2)当当0)(0 xf时时, , 函数函数)(xf在在0 x处取得极小值处取得极小值. .定理定理3(3(第二充分条件第二充分条件) )证证)1(xxfxxfxfx )()(lim)(0000, 0 异异号号,与与故故xxfxxf )()(00时,时,当当0

10、x)()(00 xfxxf 有有, 0 时,时,当当0 x)()(00 xfxxf 有有, 0 所以所以,函数函数)(xf在在0 x处取得极大值处取得极大值采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物例例2 2解解.20243)(23的极值的极值求出函数求出函数 xxxxf2463)(2 xxxf,令令0)( xf. 2, 421 xx得得驻驻点点)2)(4(3 xx, 66)( xxf )4(f, 018 )4( f故故极极大大值值,60 )2(f, 018 )2(f故故极极小小值值.48 20243)

11、(23 xxxxf图形如下图形如下采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物Mm注意注意: :. 2,)(,0)(00仍仍用用定定理理处处不不一一定定取取极极值值在在点点时时xxfxf 采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物例例3 3解解.)2(1)(32的的极极值值求求出出函函数数 xxf)2()2(32)(31 xxxf.)(,2不存在不存在时时当当xfx 时,时,当当2 x; 0)( xf时,时,当当2

12、 x. 0)( xf.)(1)2(的的极极大大值值为为xff .)(在该点连续在该点连续但函数但函数xf注意注意: :函数的不可导点函数的不可导点,也可能是函数的极值点也可能是函数的极值点.M采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物例例4)0(12,02 aeaxxxx时时证证明明证证xeaxxxf 12)(2记记xeaxxf 22)(则则(不易判明符号)(不易判明符号)xexf 2)(2ln0)( xxf得得令令0)(,2ln xfx时时当当0)(,2ln xfx时时当当的的一一个个极极大大值值点点

13、是是)(2lnxfx 而且是一个最大值点,而且是一个最大值点, )2(ln)(fxf 222ln2 a0 )(,0 xfx时时采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物0)0()( fxfxeaxx 122即即例例5 设设f ( x )连续,且连续,且f ( a )是是f ( x )的极值,问的极值,问f 2( a )是否是是否是 f 2( x )的极值的极值证证分两种情况讨论分两种情况讨论0)(),()( afafxf且且设设时时,有有使使当当),(, 0 aax)()(22afxf 所以所以 f 2

14、( a ) 是是 f 2( x ) 的极小值的极小值采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物设设f ( a ) 是是f ( x )的极小值,且的极小值,且0)( af时,有时,有使当使当),(, 0111 aax)()(afxf 又又f ( x )在在 x = a 处连续,且处连续,且0)( af时时,有有使使当当),(, 0222 aax0)( xf,min21 令令时,有时,有则当则当),( aax0)()( xfaf)()(22afxf f 2( a )是是 f 2( x )的极大值的极大值同理

15、可讨论同理可讨论f ( a ) 是是f ( x )的极大值的情况的极大值的情况采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物例例6 假定假定f(x)在在x=x0处具有直到处具有直到n阶的连续导数,且阶的连续导数,且0)(, 0)()()(0)(0)1(00 xfxfxfxfnn但但证明当证明当n为偶数时,为偶数时, f(x0)是是f(x)的极值的极值当当n为奇数时,为奇数时, f(x0)不是不是f(x)的极值的极值证证由由Taylor公式,得公式,得nnxxnfxfxf)(!)()()(0)(0 )(0之之

16、间间与与在在xx 处处连连续续在在又又0)()(xxfn0)()(lim0)()(0 xfxfnnxx采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物因此存在因此存在x0的一个小邻域,使在该邻域内的一个小邻域,使在该邻域内同号同号与与)()(0)()(xfxfnn同号同号与与)()(0)()(xffnn 下面来考察两种情形下面来考察两种情形n为奇数,当为奇数,当x 渐增地经过渐增地经过x0时时nxx)(0 变号变号!)()(nfn 不变号不变号)()(0 xfxf 变号变号)(0 xf不是极值不是极值采用PP

17、管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物n为偶数,当为偶数,当x 渐增地经过渐增地经过x0时时nxx)(0 不变号不变号!)()(nfn 不变号不变号)()(0 xfxf 不变号不变号)(0 xf是极值是极值且当且当0)(0)( xfn时时)(0 xf是极小值是极小值0)(0)( xfn当当时时)(0 xf是极大值是极大值采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物极值是函数的局部性概念极值是函数的局部性概念: :极大值

18、可能小于极小极大值可能小于极小值值,极小值可能大于极大值极小值可能大于极大值.驻点和不可导点统称为驻点和不可导点统称为临界点临界点. .函数的极值必在函数的极值必在临界点临界点取得取得.判别法判别法第一充分条件第一充分条件;第二充分条件第二充分条件;(注意使用条件注意使用条件)三、小结三、小结采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物思考题思考题下命题正确吗?下命题正确吗? 如如果果0 x为为)(xf的的极极小小值值点点,那那么么必必存存在在0 x的的某某邻邻域域,在在此此邻邻域域内内,)(xf在在0

19、x的的左左侧侧下下降降,而而在在0 x的的右右侧侧上上升升.采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物思考题解答思考题解答不正确不正确例例 0, 20),1sin2(2)(2xxxxxf当当0 x时,时, )0()(fxf)1sin2(2xx 0 于于是是0 x为为)(xf的的极极小小值值点点采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物当当0 x时,时,当当0 x时时,, 0)1sin2(2 xxx1cos在在1和和1之间振荡之间振荡因因而而)(xf在在0 x的的两两侧侧都都不不单单调调.故命题不成立故命题不成立xxxxf1cos)1sin2(2)(

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁