《2022年小升初数学考试常考题型和典型题锦集 .pdf》由会员分享,可在线阅读,更多相关《2022年小升初数学考试常考题型和典型题锦集 .pdf(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选资料欢迎下载小升初考试常考题型和典型题锦集一、计算题无论小升初还是各类数学竞赛,都会有计算题出现。计算题并不难,却很容易丢分,原因: 1、数学基础薄弱。计算题也是对考生计算能力的一种考察,并非平常所说的马虎、粗心造成的。 而且这种能力对任何一个学生来说,都是很重要的,甚至终身受益,这就是为什么中小学学习阶段,“ 逢考必有计算题” 的重要原因了! 2、心态上的轻视。很多学生称做计算题为 “ 算数 ” 题,在心理上认为很简单,一来不认真做,二来,把更多的精力放在了应用题等看起来很难的题目上了。二、行程问题我们任意翻开一套试卷,只要是一套综合的测试,大概就会发现少则一道多则三五道的行程问题。所以
2、行程问题不论在奥数竞赛中还是在“ 小升初 ” 的升学考试中,都拥有非常显赫的地位,都是命题者偏爱的题型之一。所以很多学生甚至说,“ 学好了行程,就肯定能得高分 ” 。三、数论问题在整个数学领域,数论被当之无愧的誉为“ 数学皇后 ” 。翻开任何一本数学辅导书,数论的题型都占据了显著的位置。在小学各类数学竞赛和小升初考试中,我们系统研究发现,直接运用数论知识解题的题目分值大概占据整张试卷总分的30%左右,而在竞赛的决赛试题和小升初一类中学的分班测试题中,这一分值比例还将更高。出题老师喜欢将数论题作为区分尖子生和普通学生的依据,这一部分学习的好坏将直接决定你是否可以在选拔考试中拿到满意的分数。四、几
3、何问题几何问题主要考察是考生的观察能力甚至空间想象能力,有时需要添加辅助线才能完成,对培养孩子动手甚至创新能力很有帮助。典型题:一、简便计算:(1)200320042003+2004200420062005(2)485175.17 40520032004 2005+2004=2003+200420062005=9.6517+5.17 40200320042005+1=2003+200420062005()=9.6 517+517 0.420032005=2003+2004200620042005+1()=5179.6+0.4()20032005=2003+20062006=517 102003
4、+2005=2003+2006=51704008=2003+20061001=20041003精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 7 页精选资料欢迎下载( 3)11111111+24816326412825611111111=+248163264128256S令111111112 =+2248163264128256S则11111112 =1+248163264128S即 -得:11111111111111121+248163264128248163264128256SS1255=1-=256256S即( 4)1111+1
5、33 55719 2111 11 111=1- +-+-+-33 55 719 211=1-2120=21二、行程问题1羊跑 5 步的时间马跑3 步,马跑 4 步的距离羊跑7 步,现在羊已跑出30 米,马开始追它。问:羊再跑多远,马可以追上它?【解】 根据“马跑4 步的距离羊跑7 步” ,可以设马每步长为7x 米,则羊每步长为4x 米。根据“羊跑 5 步的时间马跑3 步” ,可知同一时间马跑37x 米 21x 米,则羊跑 54x 20米。 可以得出马与羊的速度比是21x:20 x21:20 根据“现在羊已跑出30 米” ,可以知道羊与马相差的路程是30 米,他们相差的份数是21-201,现在求
6、马的21 份是多少路程,就是30( 21-20) 21630 米2甲乙辆车同时从a b 两地相对开出,几小时后再距中点40 千米处相遇?已知,甲车行完全程要 8 小时,乙车行完全程要10 小时,求a b 两地相距多少千米?【解】由“甲车行完全程要8 小时,乙车行完全程要10 小时”可知,相遇时甲行了10 份,乙行了 8 份(总路程为18 份) ,两车相差2 份。又因为两车在中点40 千米处相遇,说明两车的路程差是(40+40)千米。所以算式是(40+40)( 10-8)( 10+8) 720 千米。3在一个600 米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次
7、, 若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4 分钟相遇一次,两人跑一圈各要多少分钟?【解】 600 12=50,表示哥哥、弟弟的速度差精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 7 页精选资料欢迎下载6004=150,表示哥哥、弟弟的速度和(50+150) 2=100,表示较快的速度,方法是求和差问题中的较大数(150-50) 2=50,表示较慢的速度,方法是求和差问题中的较小数600100=6 分钟,表示跑的快者用的时间60050=12 分钟,表示跑得慢者用的时间4慢车车长125 米,车速每
8、秒行17 米,快车车长140 米,车速每秒行22 米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?【解】可以这样理解: “快车从追上慢车的车尾到完全超过慢车”就是快车车尾上的点追及慢车车头的点,因此追及的路程应该为两个车长的和。算式是( 140+125) (22-17)=53 秒5在 300 米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5 米,乙平均速度是每秒4.4 米,两人起跑后的第一次相遇在起跑线前几米?【解】 300( 5-4.4) 500 秒,表示追及时间55002500 米,表示甲追到乙时所行的路程2500300 8 圈
9、100 米,表示甲追及总路程为8 圈还多 100 米,就是在原来起跑线的前方 100 米处相遇。6一个人在铁道边,听见远处传来的火车汽笛声后,在经过57 秒火车经过她前面,已知火车鸣笛时离他1360 米, (轨道是直的 ),声音每秒传340 米,求火车的速度(得出保留整数)【解】算式: 1360(1360340+57) 22 米/秒关键理解:人在听到声音后57秒才车到,说明人听到声音时车已经从发声音的地方行出13603404 秒的路程。也就是1360 米一共用了4+5761 秒。7猎犬发现在离它10 米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑 5 步的路程,兔子要跑9 步,
10、但是兔子的动作快,猎犬跑2 步的时间,兔子却能跑3 步,问猎犬至少跑多少米才能追上兔子。【解】由“猎犬跑5 步的路程,兔子要跑9 步”可知当猎犬每步a 米,则兔子每步5/9 米。由“猎犬跑2 步的时间,兔子却能跑3 步”可知同一时间,猎犬跑2a 米,兔子可跑5/9a*35/3a 米。从而可知猎犬与兔子的速度比是2a:5/3a6:5,也就是说当猎犬跑60 米时候,兔子跑 50 米,本来相差的10 米刚好追完8 AB 两地,甲乙两人骑自行车行完全程所用时间的比是4:5,如果甲乙二人分别同时从AB 两地相对行驶,40 分钟后两人相遇,相遇后各自继续前行,这样,乙到达A 地比甲到达B 地要晚多少分钟?
11、 【解】设全程为1,甲的速度为x 乙的速度为y 列式 40 x+40y=1 x:y=5:4 得 x=1/72 y=1/90 走完全程甲需72 分钟 ,乙需 90 分钟90-72=18(分钟)精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 7 页精选资料欢迎下载9甲乙两车同时从AB 两地相对开出。第一次相遇后两车继续行驶,各自到达对方出发点后立即返回。第二次相遇时离B 地的距离是AB 全程的 1/5。已知甲车在第一次相遇时行了120 千米。 AB 两地相距多少千米?【解】 通过画线段图可知,两个人第一次相遇时一共行了1 个 AB 的路程,
12、 从开始到第二次相遇, 一共又行了3 个 AB 的路程,可以推算出甲、乙各自共所行的路程分别是第一次相遇前各自所走的路程的3 倍。即甲共走的路程是120*3 360 千米,从线段图可以看出,甲一共走了全程的(1+1/5) 。因此 360( 1+1/5) 300 千米10一船以同样速度往返于两地之间,它顺流需要6 小时,逆流8 小时。 如果水流速度是每小时 2 千米,求两地间的距离?【解】 (1/6-1/8) 21/48 表示水速的分率21/4896 千米表示总路程11快车和慢车同时从甲乙两地相对开出,快车每小时行33 千米,相遇是已行了全程的七分之四,已知慢车行完全程需要8 小时,求甲乙两地的
13、路程。【解】相遇是已行了全程的七分之四表示甲乙的速度比是4:3 时间比为3:4 所以快车行全程的时间为8/4*3 6 小时6*33 198 千米12小华从甲地到乙地,3 分之 1 骑车, 3 分之 2 乘车;从乙地返回甲地,5 分之 3 骑车, 5分之 2 乘车,结果慢了半小时。已知骑车每小时12 千米,乘车每小时30 千米,问:甲乙两地相距多少千米? 【解】把路程看成1,得到时间系数去时时间系数:1/312+2/330 返回时间系数:3/512+2/530 两者之差:( 3/512+2/5 30)-(1/312+2/330)=1/75 相当于 1/2 小时去时时间: 1/2( 1/312)
14、1/75 和 1/2( 2/330)1/75 路程: 12 1/2( 1/3 12) 1/75+30 1/2( 2/330)1/75=37.5(千米)三、数论问题1、已知四位数的个位数与千位数之和为10,个位数既是偶数又是质数,百位数与十位数组成的两位数是个质数,又知这个四位数能被36 整除,则所有满足条件的四位数中最大的是多少?【解】因为个位数既是偶数又是质数,所以个位数字为2, 又因为个位数与千位数之和为10,所以千位数字为8,因为这个四位数能被36 整除,所以能被4 与 9 整除,由于个位数与千位数之和为10,所以百位数与十位数的和除以9 余 8,又因为百位数与十位数之和不超过18,所以
15、百位数与十位数的和为8 或 17。由于能被4 整除,所以后两位数能被4 整除,由于个位数字为2,所以十位数字只能为1,3,5,7,9,若百位数字为9,由于十位数字为奇数,所以其和不能等于8 或 17,所以百位数字最大为8,此时个位数字为9,且 89 是质数,符合题意,故答案为8892. 2、 已知 A 数有 7个因数,B 数有 12 个因数,且 A、 B 的最小公倍数A,B=1728 , 则 B=_。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 7 页精选资料欢迎下载【解】 1728=2633,由于 A 数有 7 个因数,而7 为质数
16、,所以A 为某个质数的6 次方,由于 1728 只有 2 和 3 这两个质因数,如果A 为 36,那么 1728 不是 A 的倍数,不符题意,所以 A=26,那么 33为 B 的因数,设B=26 33,则( k+1)( 3+1)=12,得 k=2.所以 B=2233。3、22008+20082除以 7 的余数是 _。【解】 23=8 除以 7 的余数为 1,2008=3669+1,所以 22008=23669+1=(23)6692,其除以 7的余数为: 16692=2;2008 除以 7 的余数为6,则 20082除以 7 的余数等于62除以 7 的余数,为 1;所以 22008+20082除
17、以 7 的余数为: 2+1=3。4、 已知一个四位数加上它的各位数字之和后等于2008, 则所有这样的四位数之和为_。【解】设这样的四位数为abcd,则 abcd+a+b+c+d=2008 ,即 1001a+101b+11c+2d=2008,则a=1 或 2。(1)若 a=2,则 101b+11c+2d=6,得 b=c=0,d=3,abcd=2003;(2)若a=1,则101b+11c+2d=1007 ,由于11c+2d 11 9+2 9=117,所以101b1007-117=890,所以 b8,故 b8,故 b 为 9,11c+2d=1007-909=98 ,则 c 为偶数,且 11c98-
18、29=80,故 c7,由 c 为偶数知c=8, d=5,abcd=1985;所以,这样的四位数有2003 和 1985 两个,其和为:2003+1985=3988。5、在 1,2,3, 7,8 的任意排列中,使得相邻两数互质的排列方式共有_种。【解】这8 个数之间如果有公因数,那么无非是2 或 3。8 个数中的4 个偶数一定不能相邻,对于这类多个元素不相邻的排列问题,考虑使用“插入法” ,即首先忽略偶数的存在,对奇数进行排列,然后将偶数插入,但在偶数插入时,还要考虑 3 和 6 相邻的情况。奇数的排列一共有4!=24 种,对任意一种排列4 个数形成5 个空位,将6 插入,可以有符合条件的3 个
19、位置可以插,再在剩下的四个位置中插入2、4、8,一共有43 2=24 种,所以一共有24 324=1728 种。6、将 200 分拆成 10 个质数之和, 要求其中最大的质数尽可能的小,那么此时这个最大的质数是 _。【解】 200 10=20,即这 10 个质数的平均数为20,那么其中最大的数不小于20,又要为质数,所以至少应为23;而由 200=238+11+5 可知,将200 分拆成 8 个 23 与 1 个 11 和 1个 5,满足条件,所以符合题意的最大质数为23。7、设 a、b 是两个正整数,它们的最小公倍数是9504,那么这样的有序正整数对(a,b)共有_组。【解】先将 9504
20、分解质因数: 9504=253311,(a,b) 所含 2 的幂的情况可能是 (0,5) ,(1,5) ,(2,5) , (3,5) , (4,5) , ( 5,5) ; (5,0) , (5,1) , (5,2) , ( 5,3) , (5,4) ,共 11 种,同理3 的幂的情况有7 种, 11 的幂的情况有3 种,所以总共有1173=231 种。四、几何问题1、图中的长方形的长与宽的比为8:3,求阴影部分的面积。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 7 页精选资料欢迎下载【解】如下图,设半圆的圆心为O,连接 OC。从图中
21、可以看出,OC=20,OB=20-4=16 ,根据勾股定理可得BC=12。阴影部分面积等于半圆的面积减去长方形的面积,为 2021/2-(162) 12=200-384=244 2、求下图中阴影部分的面积:【解】 如左上图所示,将左下角的阴影部分分为两部分,然后按照右上图所示,将这两部分分别拼补在阴影位置。可以看出,原题图的阴影部分等于右下图中AB 弧所形成的弓形,其面积等于扇形OAB 与三角形OAB 的面积之差。所以阴影面积: 444-442=4.56 3、如图四边形土地的总面积是48 平方米, 三条线把它分成了4 个小三角形, 其中 2 个小三角形的面积分别是7 平方米和9平方米,那么最大
22、的一个三角形的面积是_平方米。【解】剩下两个三角形的面积和是48-7-9=32 ,是右侧两个三角形面积和的2 倍,故左侧三角形面积是右侧对应三角形面积的2 倍,最大三角形面积是92=18。4、已知四边形ABCD 和 CEFG 都是正方形,且正方形ABCD 的边长为10 厘米,那么图中阴影三角形BFD 的面积为多少平方厘米?【解】连接FC,有 FC 平行于 DB,则四边形BCFD 为梯形。有 DFB 、 DBC 共底 DB,等高,所以这两个三角形的面积相等,显然,DBC 的面积为 10102=50(平方厘米) ,即阴影部分DFB 的面积为 50 平方厘米。精选学习资料 - - - - - - -
23、 - - 名师归纳总结 - - - - - - -第 6 页,共 7 页精选资料欢迎下载5、用棱长是1 厘米的正方块拼成如下图所示的立体图形,问该图形的表面积是多少平方厘米?【解】不管叠多高,上下两面的表面积总是33;再看上下左右四个面,都是23+1,所以总计 92+74=18+28=46 。6、如图,在ABC 中, AD 是 AC 的三分之一,AE 是 AB 的四分之一,若AED 的面积是 2 平方厘米,那么ABC 的面积是多少?【解】连接EC,如图,因为AC=3AD , AED 与 AEC 中 AD 、AC 边上的高相同,所以AEC 的面积是 AED 面积的 3 倍,即 AEC 的面积是6
24、 平方厘米, 用同样方法可判断ABC 的面积是 AEC 面积的 4 倍,所以 ABC 的面积是64=24(平方厘米) 。7、将三角形ABC 的 BA 边延长 1 倍到 D,CB 边延长 2 倍到 E,AC 边延长 3 倍到 F,如果三角形 ABC 的面积等于1,那么三角形DEF 的面积是多少?【解】如图,连接CD、BF,则ADC 的面积 =ABC 的面积 =1 BDE 的面积 =BCD 的面积 2=(1+1) 2=4 CDF 的面积 =ADC 的面积 3=3 BCF 的面积 =ABC 的面积 3=3 BEF 的面积 =BCF 的面积 2=6 DEF 的面积 =ABC 的面积 +ADC 的面积 +BDE 的面积 +CDF 的面积 + BCF 的面积+BEF 的面积 =1+1+4+3+3+6=18 。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 7 页