《初中数学《整式乘除与因式分解》教案.docx》由会员分享,可在线阅读,更多相关《初中数学《整式乘除与因式分解》教案.docx(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、文本为Word版本,下载可任意编辑初中数学整式乘除与因式分解教案 一.回顾知识点 1、主要知识回顾: 幂的运算性质: aman=am+n(m、n为正整数) 同底数幂相乘,底数不变,指数相加. =amn(m、n为正整数) 幂的乘方,底数不变,指数相乘. (n为正整数) 积的乘方等于各因式乘方的积. =am-n(a0,m、n都是正整数,且mn) 同底数幂相除,底数不变,指数相减. 零指数幂的概念: a0=1(a0) 任何一个不等于零的数的零指数幂都等于l. 负指数幂的概念: a-p=(a0,p是正整数) 任何一个不等于零的数的-p(p是正整数)指数幂,等于这个数的p指数幂的倒数. 也可表示为:(m
2、0,n0,p为正整数) 单项式的乘法法则: 单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式. 单项式与多项式的乘法法则: 单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加. 多项式与多项式的乘法法则: 多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的.每一项相乘,再把所得的积相加. 单项式的除法法则: 单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式. 多项式除以单项式的法则: 多项式除以单项式,先把这个多项式的每一项除以这个单项式,
3、再把所得的商相加. 2、乘法公式: 平方差公式:(a+b)(a-b)=a2-b2 文字语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差. 完全平方公式:(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2 文字语言叙述:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍. 3、因式分解: 因式分解的定义. 把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解. 掌握其定义应注意以下几点: (1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可; (2)因式分解必须是恒等变形; (3)因式分解
4、必须分解到每个因式都不能分解为止. 弄清因式分解与整式乘法的内在的关系. 因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式. 二、熟练掌握因式分解的常用方法. 1、提公因式法 (1)掌握提公因式法的概念; (2)提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分:系数一各项系数的最大公约数;字母各项含有的相同字母;指数相同字母的最低次数; (3)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项. (4)注意点:提取公因式后各因式应该是最简形式,即分解到“底”;如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的. 2、公式法 运用公式法分解因式的实质是把整式中的乘法公式反过来使用; 常用的公式: 平方差公式:a2-b2=(a+b)(a-b) 完全平方公式:a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2第 4 页 共 4 页