2022年ADC架构III:Σ-Δ型ADC基础 .pdf

上传人:C****o 文档编号:32032820 上传时间:2022-08-08 格式:PDF 页数:12 大小:391.42KB
返回 下载 相关 举报
2022年ADC架构III:Σ-Δ型ADC基础 .pdf_第1页
第1页 / 共12页
2022年ADC架构III:Σ-Δ型ADC基础 .pdf_第2页
第2页 / 共12页
点击查看更多>>
资源描述

《2022年ADC架构III:Σ-Δ型ADC基础 .pdf》由会员分享,可在线阅读,更多相关《2022年ADC架构III:Σ-Δ型ADC基础 .pdf(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、作者: Walt Kester ADC 架构 III:- 型ADC 基础指南Rev.A, 10/08, WK Page 1 of 12MT-022简介 - 型ADC是现代语音频带、音频和高分辨率精密工业测量应用所青睐的转换器。高度数字架构非常适合现代细线CMOS工艺,因而允许轻松添加数字功能,而又不会显著增加成本。随着此转换器架构的广泛使用,了解其基本原理显得非常重要。由于该主题长度较长,- 型ADC 需要分为两个教程MT-022 和MT-023 来讨论。本教程(MT-022) 首先讨论 - 的历史和过采样、量化噪声整形、数字滤波以及抽取的基本概念。而教程 MT-023 讨论的是与 -相关的较

2、高级主题,包括空闲音、多位-型ADC、多级噪声整形 -型ADC (MASH) 、带通 -型ADC以及一些应用示例。历史展望 - 型ADC架构源自脉冲码调制 (PCM)系统的早期研发阶段,尤其是那些与称为“调制” 和“ 差分PCM” 的传输技术相关的。( 在参考文献1中,Max Hauser非常清楚地描述了 - 型ADC的历史和概念。) 调制最初由法国 ITT实验室的 E. M. Deloraine 、S. Van Mierlo 和B. Derja-vitch于1946年发明( 参考文献2、3) 。其原理在数年之后由荷兰的飞利浦实验室“ 重新发现 ” 。该实验室的工程师于1952年和 1953年

3、发表了一位和多位概念的首次大型研究结果(参考文献 4、5)。1950年,美国贝尔电话实验室的 C. C. Cutler申请了一项关于差分 PCM的重要专利,其中也涵盖了相同的重要概念(参考文献6)。 调制和差分 PCM的重要驱动力是通过传输连续样本之间的数值变化( )而非真实样本自身,以实现更高的传输效率。在 调制中,模拟信号通过1位ADC (比较器)进行量化,如图1A所示。比较器输出由1位DAC转回为模拟信号,并在通过积分器后从输入中减去。模拟信号波形的传送方式如下:1表示自上次采样后出现正偏移,而0则表示自上次采样之后出现负偏移。名师资料总结 - - -精品资料欢迎下载 - - - - -

4、 - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 12 页 - - - - - - - - - MT-0221-BITDAC+N-BITDAC+N-BIT FLASHADCANALOGINPUTANALOGINPUTDIGITALOUTPUTDIGITALOUTPUT(A) DELTA MODULATION(B) DIFFERENTIAL PCMSAMPLING CLOCKSAMPLING CLOCKSLOPE OVERLOADPage 2 of 12 图1: 调制和差分 PCM图2:使用 调制进行量化如果模拟信号在一定时间内保持固

5、定的直流电平,则会获得0和1交替形式。应注意,差分PCM(见图1B)采用几乎完全相同的概念,不同之处仅在于其采用多位ADC而非单个比较器来获得所传送的信息。由于并没有限制同符号脉冲的出现次数,因此 调制系统能够跟踪任何幅度的信号。理论上不存在峰值削波。不过, 调制在理论上存在一定局限性,即模拟信号不可快速变化。斜率削波问题如图2所示。图中,虽然每个采样时刻都指示正偏移,但模拟信号上升过快,因此量化器无法保持同步。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 2 页,共 12 页 -

6、 - - - - - - - - MT-022Page 3 of 12 要减少斜率削波,可增加量化步长或加快采样速率。差分PCM采用多位量化器通过增加复杂性来有效地增加量化步长。测试表明,要获得与经典PCM相同的品质, 调制要求采用非常高的采样速率,通常为最高目标频率的20倍,而非奈奎斯特速率 (2倍)。为此, 调制和差分 PCM从未广泛流行开来,但只要对 型调制器稍微进行一些修改便可得到基本的 -架构,该架构是而今最受欢迎的ADC架构之一。1954年,贝尔实验室的 C. C. Cutler 申请了一项非常重要的专利,其中介绍了旨在实现较高分辨率的过采样和噪声整形理论(参考文献 7)。他并不是

7、专门为了设计奈奎斯特ADC,而是为了传送过采样噪声整形信号而又不降低数据速率。因此,Cutler的转换器呈现了 -型ADC中的所几乎有概念,只有数字滤波和抽取除外,数字滤波和抽取在使用真空管技术的时代显得过于复杂和昂贵。之后数年里依旧偶尔出现这些概念方面的重要著作,其中包括C. B. Brahm于1961年申请的重要专利,该专利详细介绍了二阶多位噪声整形ADC 的环路滤波器模拟设计 (参考文献8) 。这段时间内,晶体管电路开始取代真空管,这为该架构的实现提供了更多可能性。1962年, Inose、Yasuda 和Murakami 详细阐述了 Cutler于1954年提出的一位过采样噪声整形架构

8、(参考文献 9)。他们的实验电路采用固态器件来实现一阶和二阶-型调制器。在 1962年论文之后紧接着于 1963年发表了第二篇论文,其中给出了过采样和噪声整形的出色理论探讨(参考文献 10)。这两篇论文还最先使用“-”名称来描述该架构。“-”名称一直沿用到19世纪 70年代,那时 AT&T 工程师开始使用“-”名称。从此以后,两个名称都一直在用;不过, -可能是两个名称当中较为正确的。有趣的是,前文提到的所有著作都是关于直接传送过采样数字化信号,而非奈奎斯特ADC的实现。 1969 年,贝尔实验室的 D. J. Goodman发表了一篇论文,介绍了在调制器后使用数字滤波器和抽取器的真正奈奎斯特

9、-型ADC(参考文献11)。这是首次使用 -架构来明确地构建奈奎斯特 ADC。1974 年,J. C. Candy (也来自贝尔实验室 )描述了一种具有噪声整形、数字滤波和抽取功能的多位过采样- 型ADC 来实现高分辨率奈奎斯特ADC (参考文献12) 。与其它架构相比,该 IC -型ADC具有数项优势,尤其是针对高分辨率、低频应用时。首先,该一位 -型ADC本身具有单调性且无需激光调整。此外,该架构的数字化密集特性使得该 - 型ADC 非常适合低成本 CMOS工艺。参考文献13-21中给出了一些早期单芯片 - 型ADC示例。从那以后,上文所述早期著作中提出的基本架构经过了连续工艺的过程和设计

10、改进。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 3 页,共 12 页 - - - - - - - - - MT-022Page 4 of 12 6. 20BdRNS1. 67BdENOB-=.现代CMOS - 型ADC(以及DAC,就此而言 )是语音频带和音频应用所青睐的转换器。高度数字化架构使得其非常适合细线CMOS工艺。此外,高分辨率 (最高达 24位)低频- 型ADC在精密工业测量应用中几乎已经取代了老的积分型转换器。 - 型ADC基础 - 型ADC的架构和理论说明可说是

11、数不胜数,但大多数都涉及到错综复杂的积分运算并因此而变得更让人费解。有些工程师不清楚-型ADC的工作原理,故而研读已发表的典型文章,结果发现这些文章内容过于复杂而不易理解。其实,只要避开详细的数学运算,-型ADC也没什么特别难以理解的,而此部分的目的就是尝试阐明该主题。 - 型ADC包含非常简单的模拟电子电路(一个比较器、一个基准电压源、一个开关以及一个或以上的积分器与模拟求和电路)和相当复杂的数字运算电路。这个数字电路由一个用作滤波器(通常但不总是低通滤波器 )的数字信号处理器(DSP)组成。无需确切知道该滤波器的工作原理,便可领会其具体作用。要弄清楚-型ADC的工作原理,需要熟悉过采样、量

12、化噪声整形、数字滤波和抽取等概念。接下来,我们借助频域分析来看看过采样技术。当直流转换具有多达? LSB 的量化误差时,数据采样系统便存在量化噪声。理想的经典N位采样 ADC在DC至fs/2的奈奎斯特频段范围内均匀地分布着均方根大小为q/ 12 的量化噪声 (其中, q是一个 LSB的值而 fs是采样频率),如图3A所示。因此,采用满量程正弦波输入时,其SNR将为(6.02N + 1.76) dB。(有关推到过程,请参考 “ 教程MT-001” 。)如果ADC并不理想,其噪声大于理论上的最小量化噪声,那么其有效分辨率将低于N位。其实际分辨率 (通常称为 “ 有效位数 ” 或ENOB)定义为:等

13、式 1如果选择更高的采样速率Kfs(见图3B),均方根量化噪声保持为q/ 12 ,但该噪声现在分布在DC至Kfs/2这个更宽的带宽范围内。如果接着在输出端应用数字低通滤波器(LPF),则可以消除多数量化噪声,而又不会影响所需信号,从而使得ENOB得以改善。这样,我们便使用低分辨率 ADC完成了高分辨率模数转换。系数K通常称为 “ 过采样率 ” 。注意,从这一点看,过采样还有一个好处,那就是可降低对模拟抗混叠滤波器的要求。这是- 的一项巨大优势,尤其是在锐截止线性相位滤波器成本非常重要的消费电子音频应用中。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - -

14、- - - - - - 名师精心整理 - - - - - - - 第 4 页,共 12 页 - - - - - - - - - MT-022fs2fsKfs2KfsKfsKfs2fs2fs2DIGITAL FILTERREMOVED NOISEREMOVED NOISEQUANTIZATIONNOISE = q / 12 q = 1 LSBADCADCDIGITALFILTER?MODDIGITALFILTERfsKfsKfsDECfsNyquistOperationOversampling+ Digital Filter+ DecimationOversampling+ Noise Shap

15、ing+ Digital Filter+ DecimationABCDECfsPage 5 of 12 图3:过采样、数字滤波、噪声整形和抽取由于数字输出滤波器会减少带宽,因此输出数据速率将小于原始采样速率(Kfs)但仍旧满足奈奎斯特准则。这点或许可通过将每第M个结果传递至输出端并丢弃其它结果来实现。该过程称为 M倍“ 抽取” 。不管该术语的来源如何( decem在拉丁语中表示 “ 十” ),只要输出数据速率是信号带宽的两倍以上,那么M可以是任意整数值。抽取并不会导致任何信息丢失(见图3B)。如果只是采用过采样来提高分辨率,则要让分辨率增加N位,就必须进行 22N倍过采样。 - 型转换器无需此

16、类高过采样率,因为其不仅会限制信号通带,而且还会对量化噪声进行整形,以使此类噪声大多数位于此通带之外,如图3C所示。如果选用一个 1位ADC(一个比较器 )并以一个积分器的输出来驱动该比较器,然后将该ADC输出馈入一个 1位DAC并将 1位DAC的输出与输入信号的加和馈入积分器,便可得到一阶-型调制器,如图 4所示。若接着在数字输出端添加一个数字低通滤波器(LPF)和抽取器,则可以得到一个-型ADC 。-型调制器会对量化噪声进行整形,以使其位于数字输出滤波器的通带以外,因此ENOB要远大于在该过采样率下所预期的结果。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - -

17、- - - - - - - - - 名师精心整理 - - - - - - - 第 5 页,共 12 页 - - - - - - - - - MT-022+_+VREFVREFDIGITALFILTERANDDECIMATOR+_CLOCKKfsVINN-BITSfsfsAB1-BIT DATASTREAM1-BITDACLATCHEDCOMPARATOR(1-BIT ADC)1-BIT,KfsSIGMA-DELTA MODULATORINTEGRATORPage 6 of 12 图4:一阶 -型ADC直观而言, -型ADC的工作方式如下。假定在VIN处施加直流输入。积分器在节点A处持续斜升或斜

18、降。比较器的输出通过一个1位DAC反馈至节点 B处的求和输入。比较器输出通过1位DAC的回到求和点的负反馈环路强制将节点B处的平均直流电压设为VIN。这表示平均DAC输出电压必须等于输入电压VIN。平均 DAC输出电压由比较器输出的1位数据流中的1的密度来控制。随着输入信号增加到+VREF,串行位流中的 1数量增加,而 0数量则减少。类似地,随着信号负向趋近VREF,串行位流中的 1数量减少,而 0数量则增加。从非常简单的角度来看,此项分析显示输入电压的平均值包含在比较器输出的串行位流中。数字滤波器和抽取器处理该串行位流并产生最终的输出数据。对于任意给定输入值,一个采样间隔内的1位ADC的输出

19、数据几乎毫无意义。只有对大量样本求平均值时,才会产生有意义的值。由于一位数据输出具有明显的随机性,因此很难在时域内对 -型调制器进行分析。如果输入信号接近正满量程,位流中的1将明显多于0。同样,如果信号接近负满量程,位流中的0将明显多于 1。如果信号接近中间电平,则 1和0的数量大致相等。图 5显示了两种输入条件下积分器的输出。第一种条件是输入为 0(中间电平 )。为了解码输出,需使输出样本通过一个简单的数字低通滤波器(对每4个样本求平均值 )。滤波器的输出为 2/4,此值代表双极性 0。如果对更多样本求平均值,则可实现更高动态范围。例如,对4个样本求平均值可以得到2位的分辨率,对 8个样本求

20、平均值则可得到 4/8,或者说 3位的分辨率。在图 5下方的波形中,针对 4个样本所获得的平均值为3/4,8个样本的平均值为 6/8。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 6 页,共 12 页 - - - - - - - - - 图5:-型调制器波形MT-022Page 7 of 12 有关-型调制器时域特性的交互式教程,请参见ADI 公司设计中心 网页中的 “ -教程” ,其中以图形方式展示了理想-型ADC的行为。 - 型ADC也可以视作一个后接计数器的同步电压频率转换器

21、。如果对足够多样本的输出数据流中 1的数量进行计数,则计数器输出将能代表输入的数字值。很显然,这种求平均的方法仅对直流或变化非常慢的输入信号有效。此外,为了实现N位有效分辨率,必须计数2N个时钟周期,这将严重限制有效采样速率。应注意,由于数字滤波器是-型ADC的一个重要组成部分,其固定的“ 流水线 ” 延迟(有时称为“ 延迟时间 ” )主要取决于数字滤波器中的抽头数。-型ADC中的数字滤波器可能相当大(数百抽头 ),因此在多路复用应用中,延迟时间可能会变成一个问题,因为在切换通道之后必须留出足够的建立时间。 - 型ADC的频域分析和噪声整形进一步进行时域分析的意义不大,而要清楚地说明噪声整形概

22、念,最好是在频域内考虑简单的-型调制器模型,如图 6所示。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 7 页,共 12 页 - - - - - - - - - MT-022ANALOG FILTERH(f) =1fXY+_X Y1f( X Y )Q = QUANTIZATIONNOISEY = 1f( X Y )+ QREARRANGING, SOLVING FOR Y:Y = Xf + 1+Q ff + 1SIGNAL TERMNOISE TERMYPage 8 of 12 图

23、6:- 型调制器的简化频域线性化模型调制器中的积分器表示为传递函数等于H(f) = 1/f 的模拟低通滤波器。此传递函数具有与输入频率成反比的幅度响应。1位量化器产生量化噪声 Q,量化噪声 Q被注入输出求和模块。如果我们以 X表示输入信号并以 Y表示输出,则输入加法器的信号输出为XY。此信号与滤波器传递函数 1/f相乘,然后结果送入输出加法器的一路输入。可以看出,输出电压Y的表达式可以写作:等式 2此表达式经过简单地整理并求解Y,便可得到以 X、f和Q表示的下列等式:等式 3注意,当频率 f趋近0时,输出电压 Y趋近X且无噪声成分。在较高频率时,信号成分的幅度趋近0,且噪声成分趋近 Q。在高频

24、时,输出主要由量化噪声组成。本质上,模拟滤波器对信号有低通效应,对量化噪声有高通效应。因此,模拟滤波器执行-型调制器模型中的噪声整形功能。对于给定输入频率,高阶模拟滤波器可提供更多衰减。只要采取一定的防范措施,则 -型调制器也同样如此。QY)(Xf1Y+-=1ffQ1fXY+?+=名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 8 页,共 12 页 - - - - - - - - - MT-022fs2Kfs22ND ORDER1ST ORDERDIGITALFILTER?+_VIN

25、INTEGRATOR+_CLOCKKfs1-BITDACINTEGRATORDIGITAL FILTERANDDECIMATORN-BITSfs+_1-BITDATASTREAMPage 9 of 12 图7:-型调制器对量化噪声进行整形图8:二阶 -型ADC通过在 -型调制器中使用一个以上的积分和求和级,我们可以实现更高阶量化噪声整形并可针对给定过采样率取得更好的ENOB,如图 7所示为一阶和二阶 -型调制器。二阶-型调制器的框图如图 8所示。之前曾认为三阶及以上的-型ADC在输入为某些值时可能会出现不稳定。近期分析结果显示,比较器中使用有限增益而非无限增益时,并不一定会出现不稳定情况,但即

26、使真的开始出现不稳定情况,还可以设置数字滤波器和抽取器中的 DSP来识别初始不稳定性并做出反应来进行预防。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 9 页,共 12 页 - - - - - - - - - MT-022FIRST-ORDER LOOP9dB / OCTAVESECOND-ORDER LOOP15dB / OCTAVETHIRD-ORDER LOOP*21dB / OCTAVE* 2nd ORDER LOOPS DO NOTOBEY LINEAR MODEL481

27、63264128256020406080100120SNR(dB)OVERSAMPLING RATIO, KPage 10 of 12 图9显示的是 -型调制器的阶数与实现特定SNR所需的过采样量之间的关系。例如,如果过采样率为 64,则理想的二阶系统能够提供约80 dB的SNR,这表示有效位数 (ENOB) 约为13。虽然数字滤波器和抽取器的滤波可以达到任何需要的精度,但向外界提供13个以上的二进制位是没有意义的。增加的位不含有用的信号信息,并且除非采用后置滤波技术,否则将淹没于量化噪声中。通过增加过采样率和/或采用更高阶调制器,可以从1位系统获得额外分辨率。有关通常用于实现更高分辨率的其它

28、方法(如多位- 架构),请参见 “ 教程MT-023” 。总结本教程从历史展望角度介绍了-型ADC的各种基础知识,包括过采样、数字滤波、噪声整形和抽取等重要概念。“ 教程 MT-023 ” 将介绍一些更高级的概念和- 型ADC的各种应用,如 ,空闲音、多位 -、MASH和带通 -。图9:一阶、二阶和三阶环路的SNR与过采样率之间的关系名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 10 页,共 12 页 - - - - - - - - - MT-022参考文献1.Max W. Hau

29、ser, Principles of Oversampling A/D Conversion, Journal Audio Engineering Society, Vol. 39, No. 1/2, January/February 1991, pp. 3-26. (one of the best tutorials and practical discussions of the sigma-delta ADC architecture and its history).2.E. M. Deloraine, S. Van Mierlo, and B. Derjavitch, Methode

30、 et syst me de transmission par impulsions, French Patent 932,140 , issued August, 1946. Also British Patent 627,262, issued 1949. 3.E. M. Deloraine, S. Van Mierlo, and B. Derjavitch, Communication System Utilizing Constant Amplitude Pulses of Opposite Polarities, U.S. Patent 2,629,857 , filed Octob

31、er 8, 1947, issued February 24, 1953. 4.F. de Jager, Delta Modulation: A Method of PCM Transmission Using the One Unit Code, Phillips Research Reports, Vol. 7, 1952, pp. 542-546. (additional work done on delta modulation during the same time period). 5.H. Van de Weg, Quantizing Noise of a Single Int

32、egration Delta Modulation System with an N-Digit Code, Phillips Research Reports, Vol. 8, 1953, pp. 367-385. (additional work done on delta modulation during the same time period). 6.C. C. Cutler, Differential Quantization of Communication Signals, U.S. Patent 2,605,361 , filed June 29, 1950, issued

33、 July 29, 1952. (recognized as the first patent on differential PCM or delta modulation, although actually first invented in the Paris labs of the International Telephone and Telegraph Corporation by E. M. Deloraine, S. Mierlo, and B. Derjavitch a few years earlier) 7.C. C. Cutler, Transmission Syst

34、ems Employing Quantization, U.S. Patent 2,927,962, filed April 26, 1954, issued March 8, 1960. (a ground-breaking patent describing oversampling and noise shaping using first and second-order loops to increase effective resolution. The goal was transmission of oversampled noise shaped PCM data witho

35、ut decimation, not a Nyquist-type ADC).8.C. B. Brahm, Feedback Integrating System, U.S. Patent 3,192,371 , filed September 14, 1961, issued June 29, 1965. (describes a second-order multibit oversampling noise shaping ADC).9.H. Inose, Y. Yasuda, and J. Murakami, A Telemetering System by Code Modulati

36、on: ?- Modulation, IRE Transactions on Space Electronics Telemetry, Vol. SET-8, September 1962, pp. 204-209. Reprinted in N. S. Jayant, Waveform Quantization and Coding, IEEE Press and John Wiley, 1976, ISBN 0-471-01970-4. (anelaboration on the 1-bit form of Cutlers noise-shaping oversampling concep

37、t. This work coined the description of the architecture as delta-sigma modulation).10. H. Inose and Y. Yasuda, A Unity Bit Coding Method by Negative Feedback, IEEE Proceedings , Vol. 51, November 1963, pp. 1524-1535. (further discussions on their 1-bit delta-sigma concept).11. D. J. Goodman, The App

38、lication of Delta Modulation of Analog-to-PCM Encoding, Bell System Technical Journal, Vol. 48, February 1969, pp. 321-343. Reprinted in N. S. Jayant, Waveform Quantization and Coding,IEEE Press and John Wiley, 1976, ISBN 0-471-01970-4.(the first description of using oversampling and noise shaping t

39、echniques followed by digital filtering and decimation to produce a true Nyquist-rate ADC).12. J. C. Candy, A Use of Limit Cycle Oscillations to Obtain Robust Analog-to-Digital Converters, IEEE Transactions on Communications, Vol. COM-22, December 1974, pp. 298-305. (describes a multibit oversamplin

40、g noise shaping ADC with output digital filtering and decimation to interpolate between the quantization levels). 13. R. J. van de Plassche, A Sigma-Delta Modulator as an A/D Converter, IEEE Transactions on Circuits and Systems , Vol. CAS-25, July 1978, pp. 510-514. Page 11 of 12 名师资料总结 - - -精品资料欢迎下

41、载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 11 页,共 12 页 - - - - - - - - - Page 12 of 12 MT-02214. B. A. Wooley and J. L. Henry, An Integrated Per-Channel PCM Encoder Based on Interpolation, IEEE Journal of Solid State Circuits , Vol. SC-14, February 1979, pp. 14-20. (one of the firs

42、t all-integrated CMOS sigma-delta ADCs). 15. B. A. Wooley et al, An Integrated Interpolative PCM Decoder, IEEE Journal of Solid State Circuits, Vol. SC-14, February 1979, pp. 20-25. 16. J. C. Candy, B. A. Wooley, and O. J. Benjamin, A Voiceband Codec with Digital Filtering, IEEE Transactions on Comm

43、unications , Vol. COM-29, June 1981, pp. 815-830. 17. J. C. Candy and Gabor C. Temes, Oversampling Delta-Sigma Data Converters, IEEE Press, ISBN 0-87942-258-8, 1992. 18. R. Koch, B. Heise, F. Eckbauer, E. Engelhardt, J. Fisher, and F. Parzefall, A 12-bit Sigma-Delta Analog-to-Digital Converter with

44、a 15 MHz Clock Rate, IEEE Journal of Solid-State Circuits , Vol. SC-21, No. 6, December 1986. 19. D. R. Welland, B. P. Del Signore and E. J. Swanson, A Stereo 16-Bit Delta-Sigma A/D Converter for Digital Audio, J. Audio Engineering Society , Vol. 37, No. 6, June 1989, pp. 476-485. 20. B. Boser and B

45、ruce Wooley, The Design of Sigma-Delta Modulation Analog-to-Digital Converters, IEEE Journal of Solid-State Circuits, Vol. 23, No. 6, December 1988, pp. 1298-1308. 21. J. Dattorro, A. Charpentier, D. Andreas, The Implementation of a One-Stage Multirate 64:1 FIR Decimator for use in One-Bit Sigma-Del

46、ta A/D Applications, AES 7th International Conference , May 1989. 22. Walt Kester, Analog-Digital Conversion, Analog Devices, 2004, ISBN 0-916550-27-3, Chapter 3. Also available as The Data Conversion Handbook , Elsevier/Newnes, 2005, ISBN 0-7506-7841-0, Chapter 3. Copyright 2009, Analog Devices, In

47、c. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their respect

48、ive holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Tutorials. 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 12 页,共 12 页 - - - - - - - - -

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁