2022年高一古典概型练习题附详细答案 .pdf

上传人:Q****o 文档编号:31711543 上传时间:2022-08-08 格式:PDF 页数:8 大小:132.29KB
返回 下载 相关 举报
2022年高一古典概型练习题附详细答案 .pdf_第1页
第1页 / 共8页
2022年高一古典概型练习题附详细答案 .pdf_第2页
第2页 / 共8页
点击查看更多>>
资源描述

《2022年高一古典概型练习题附详细答案 .pdf》由会员分享,可在线阅读,更多相关《2022年高一古典概型练习题附详细答案 .pdf(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、古典概型练习题(有祥细解答)一、选择题1为了丰富高一学生的课外生活,某校要组建数学、计算机、航空模型3 个兴趣小组,小明要选报其中的2 个,则基本事件有 () A1 个B2 个C3 个D4 个答案C 解析基本事件有 数学,计算机 ,数学,航空模型 ,计算机,航空模型 ,共3 个,故选 C. 2下列试验中,是古典概型的为() A种下一粒花生,观察它是否发芽B向正方形 ABCD内,任意投掷一点P,观察点 P是否与正方形的中心O 重合C从 1,2,3,4四个数中,任取两个数,求所取两数之一是2 的概率D在区间 0,5内任取一点,求此点小于2 的概率答案C 解析对于 A,发芽与不发芽的概率一般不相等,

2、不满足等可能性;对于B,正方形内点的个数有无限多个,不满足有限性;对于C,满足有限性和等可能性,是古典概型;对于 D,区间内的点有无限多个,不满足有限性,故选C. 3袋中有 2 个红球, 2 个白球, 2 个黑球,从里面任意摸2 个小球,不是基本事件的为 () A正好 2 个红球 B正好 2 个黑球 C正好 2 个白球 D至少 1 个红球 答案D 解析至少 1 个红球包含,一红一白或一红一黑或2 个红球,所以 至少 1 个红球不是基本事件,其他项中的事件都是基本事件4在 200瓶饮料中,有 4 瓶已过保质期,从中任取一瓶,则取到的是已过保质期的概率是 () A0.2 B0.02 名师资料总结

3、- - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 8 页 - - - - - - - - - C0.1 D0.01 答案B 解析所求概率为42000.02. 5下列对古典概型的说法中正确的是() 试验中所有可能出现的基本事件只有有限个每个事件出现的可能性相等每个基本事件出现的可能性相等基本事件总数为n, 随机事件 A 若包含 k 个基本事件,则 P(A)knABCD答案B 解析中所说的事件不一定是基本事件,所以不正确;根据古典概型的特点及计算公式可知正确6从 1,2,3,4中任取 2 个

4、不同的数,则取出的2 个数之差的绝对值为2 的概率是 ( ) A.12 B.13 C.14 D.16解析:从 1,2,3,4中任取 2 个不同的数,共有 (1,2) ,(1,3) ,(1,4) ,(2,3) ,(2,4) ,(3,4)6种不同的结果,取出的2 个数之差的绝对值为2 有(1,3) ,(2,4)2种结果,概率为13,故选 B.答案: B 7先后抛掷两枚均匀的正方体骰子( 它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为x,y,则满足 log2xy1 的概率为 ( ) A.16 B.536 C.112 D.12解析:由 log2xy1 得 2xy. 又 x1

5、,2,3,4,5,6,y1,2,3,4,5,6,所以满足题意的有x1,y2 或 x2,y4 或 x3,y6,共 3 种情况所以所求的概率为336112,故选 C.答案: C 8将号码分别为 1,2,3,4的四个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个小球,其号码为a,放回后,乙从此口袋中再摸出一个小球,其号码为b,则使不等式 a2b40成立的事件发生的概率为 ( ) A.18 B.316 C.14 D.12名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 2

6、 页,共 8 页 - - - - - - - - - 解析:由题意知 ( a,b)的所有可能结果有4416 个其中满足 a2b40 的有(1,3) ,(1,4) ,(2,4) ,(3,4) ,共 4 个,所以所求概率为14. 答案: C 9若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为 ( ) A.23 B.25 C.35 D.910解析:记事件 A:甲或乙被录用从五人中录用三人,基本事件有( 甲,乙,丙 ) 、( 甲,乙,丁 ) 、( 甲,乙,戊 ) 、( 甲,丙,丁 )、(甲,丙,戊 )、(甲,丁,戊 )、(乙,丙 ,丁) 、( 乙,丙

7、,戊 ) 、( 乙,丁,戊) 、( 丙,丁,戊 ) ,共 10 种可能,而 A的对立事件 A 仅有( 丙,丁,戊 ) 一种可能, A的对立事件 A 的概率为 P( A ) 110,P(A)1P( A )910. 选 D.答案:D 10 为 3、5,第三组有 3 个数为 7、9、11,依此类推,则从第十组中随机抽取一个数恰为3的倍数的概率为 ( ) A.110 B.310 C.15 D.35解析:由已知可得前九组共有123 945 个奇数,第十组共有10 个奇数,分别是91,9 3,95,97,99,101,103,105,107,109这 10个数字, 其中恰为 3 的倍数的数有 93,99,

8、105 三个,故所求概率为 P310. 答案: B 11.袋中共有 6 个除了颜色外完全相同的球,其中有1 个红球, 2 个白球和 3 个黑球,从袋中任取两球,两球颜色为一白一黑的概率等于() A.15B.25C.35D.45答案B 解析1 个红球, 2 个白球和 3 个黑球记为 a1,b1,b2,c1,c2,c3从袋中任取两球共有a1,b1;a1,b2;a1,c1;a1,c2;a1,c3;b1,b2;b1,c1;b1,c2;b1,c3;b2,c1;b2;c2;b2,c3;c1,c2;c1,c3;c2,c315 种;满足两球颜色为一白一黑有6 种,概率等于61512.若连续抛掷两次骰子得到的点

9、数分别为m,n,则点 P(m,n)在直线 xy4 上名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 3 页,共 8 页 - - - - - - - - - 的概率是 () A.13B.14C.16D.112答案D 解析由题意知 (m, n)的取值情况有 (1,1), (1,2), , (1,6); (2,1), (2,2), , (2,6); ;(6,1),(6,2),(6,6)共 36 种情况而满足点P(m,n)在直线 xy4 上的取值情况有(1,3),(2,2),(3,1),共

10、3 种情况,故所求概率为336112,故选 D. 二、填空题13袋子中有大小相同的四个小球,分别涂以红、白、黑、黄颜色(1)从中任取 1 球,取出白球的概率为 _(2)从中任取 2 球,取出的是红球、白球的概率为_答案(1)14(2)16解析(1)任取一球有 4 种等可能结果,而取出的是白球只有一个结果,P14. (2)取出 2 球有 6 种等可能结果, 而取出的是红球、 白球的结果只有一种, 概率 P16. 14在两个袋内, 分别装着写有 0,1,2,3,4,5六个数字的 6 张卡片,今从每个袋中任取一张卡片,则两数之和等于5 和概率为 _ 答案16解析两个袋内分别任取一张卡片包含的基本事件

11、有(0,0),(0,1),(0,2),(0,3),(0,4),(0,5),(1,0),(1,1),(1,2),(1,3),(1,4),(1,5),(2,0),(2,1),(2,2),(2,3),(2,4),(2,5),名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 4 页,共 8 页 - - - - - - - - - (3,0),(3,1),(3,2),(3,3),(3,4),(3,5),(4,0),(4,1),(4,2),(4,3),(4,4),(4,5),(5,0),(5,1)

12、,(5,2),(5,3),(5,4),(5,5),共有 36个基本事件,设两数之和等于 5为事件 A, 则事件 A包含的基本事件有 (0,5),(1,4),(2,3),(3,2),(4,1),(5,0),共有 6 个基本事件,则 P(A)63616. 15某学校共有 2 000名学生,各年级男、女生人数如下表:一年级二年级三年级男生369370y女生381x z已知从全校学生中随机抽取1 名学生,抽到二年级女生的概率是0.19,现拟采用分层抽样的方法从全校学生中抽取80 名学生,则三年级应抽取的学生人数为_人答案20 解析由题意知,抽到二年级女生的概率为0.19,则x2 0000.19,解得

13、x380,则 yz2 000(369381370380)500,则三年级学生人数为500,又分层抽样的抽样比为802 000125,所以从全校学生中抽取80 名学生中,三年级应抽取的学生人数为 50012520. 16一枚硬币连掷3 次,观察向上面的情况,并计算总数;求仅有2 次正面向上的概率 _解析(1)所有的基本事件是 (正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正 ),(反,正,反 ),(反,反,正 ),(反,反,反 ),共有 8 个基本事件1.由(1)知, 仅有 2 次正面向上的有 (正, 正, 反), (正,反,正 ),(反,正,正 ),共 3 个设仅有

14、 2 次正面向上为事件A,则 P(A)38. 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 5 页,共 8 页 - - - - - - - - - 三解答题17.随意安排甲、乙、丙3 人在 3 天假期中值班,每人值班1 天,则:(1)这 3 人的值班顺序共有多少种不同的排列方法?(2)这 3 人的值班顺序中,甲在乙之前的排法有多少种?(3)甲排在乙之前的概率是多少?解析(1)3个人值班的顺序所有可能的情况如下图所示甲乙丙丙乙乙甲丙丙甲丙甲乙乙甲由图知,所有不同的排列顺序共有6 种(

15、2)由图知,甲排在乙之前的排法有3 种(3)记“甲排在乙之前 ”为事件 A,则 P(A)3612. 18.袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为 1,2. (1)从以上五张卡片中任取两张, 求这两张卡片颜色不同且标号之和小于4 的概率;(2)现袋中再放入一张标号为0 的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4 的概率解析(1)从五张卡片中任取两张的所有可能情况有如下10 种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.其中两张卡片的颜色不同且标号之和小于4 的有 3

16、种情况,故所求的概率为P310. (2)加入一张标号为 0 的绿色卡片后, 从六张卡片中任取两张, 除上面的 10 种情况外,多出 5 种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,即共有 15 种情况,其中颜色不同且标号之和小于4 的有 8 种情况,所以概率为P815. 19设连续掷两次骰子得到的点数分别为m ,n,令平面向量 a( m ,n) ,b(1,3)(1) 求使得事件“ ab ”发生的概率;(2) 求使得事件“ |a| |b| ”发生的概率解析: (1) 由题意知, m 1,2,3,4,5,6,n1,2,3,4,5,6,故( m ,n)所有可能的取法共36 种使得 ab

17、 ,即 m 3n0,即 m 3n,共有 2 种:(3,1) 、(6 ,2) ,名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 6 页,共 8 页 - - - - - - - - - 所以事件 ab的概率为236118. (2) |a| |b| ,即 m2n210,共有(1,1) 、(1,2) 、(1,3) 、(2,1) 、(2,2) 、(3,1)6种使得 |a| |b| ,其概率为63616. 20. 一个袋中有 4 个大小相同的小球,其中红球1 个,白球 2 个,黑球 1 个,现从

18、袋中有放回地取球,每次随机取一个(1) 求连续取两次都是白球的概率;(2) 假设取一个红球记2 分,取一个白球记1 分,取一个黑球记0 分,若连续取三次,则分数之和为 4 分的概率是多少?解析: (1) 连续取两次的基本事件有:( 红,红 ),(红,白 1) ,( 红,白 2),(红,黑 ) ;( 白 1,红),(白 1,白 1) ,( 白 1,白 2),(白 1,黑) ;( 白 2,红),(白 2,白 1) ,( 白 2,白 2),(白 2,黑) ;( 黑,红 ),(黑,白 1) ,( 黑,白 2),(黑,黑 ) ,共 16 个连 续取两次都是白球的基本事件有:( 白 1,白 1) ,(白

19、1,白 2),( 白 2,白 1),( 白 2,白 2)共 4 个,故所求 概率为 p141614. (2) 连续取三次的基本事件有:( 红,红,红 ) ,( 红,红,白 1),( 红,红,白 2),( 红,红,黑 ) ,( 红,白 1,红) ,( 红,白 1,白 1),(红,白 1,白 2),(红,白 1,黑) ,共 64 个因为取一个红球记2 分,取一个白球记 1 分,取一个黑球记 0 分,若连续取三次,则分数之和为4 分的基本事件如下:( 红,白 1,白 1) ,( 红,白 1,白 2) ,( 红,白 2,白 1),( 红,白 2,白 2),( 白 1,红,白 1),( 白 1,红,白

20、2),( 白 2,红,白 1),( 白 2,红,白 2),(白 1,白 1,红),(白 1,白 2,红),(白2,白 1,红) ,( 白 2,白 2,红) ,( 红,红,黑 ),(红,黑,红 ),(黑,红,红 ) ,共 15个,故所求概率为1564. 13(能力提升 )(2014 年九江一模 ) 一个口袋里有 2 个红球和 4 个黄球,从中随机地连取3 个球,每次取一个,记事件A“恰有一个红球”,事件B“第 3 个是红球”求(1) 不放回时,事件 A,B的概率;(2) 每次取后放回时, A,B的概率名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - -

21、 - - - - 名师精心整理 - - - - - - - 第 7 页,共 8 页 - - - - - - - - - 解析: (1) 由不放回抽样可知,第一次从6 个球中取一个,第二次只能从5 个球中取一个,第三次从 4 个球中取一个,基本事件共有654 120 个,又事件A 中含有基本事件3243 72个(第 1 个是红球,则第2、3 个是黄球,取法有243 种,第 2 个是红球和第3 个是红球和第 1个是红球的取法一样多 ),P( A) 7212035. 第 3 次抽取红球对前两次没有什么要求,因为红球数占总数的13,在每一次取到都是随机的等可能事件,P( B) 13. (2) 由放回抽

22、样知,每次都是从6 个球中任取一个,有取法63216 种,事件 A 包含基本事件3244 96 种P( A) 9621649. 第三次取到红球包括B1红,黄,红 ,B2 黄,黄,红 ,B3黄,红,红 三种两两互斥的情形, P( B1)242216227,P(B2) 442216427,P(B3) 422216227,P( B) P( B1)P( B2) P( B3) 227427227827. 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 8 页,共 8 页 - - - - - - - - -

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 技术总结

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁