云计算技术及应用ppt.ppt

上传人:创****公 文档编号:3146487 上传时间:2020-07-07 格式:PPT 页数:39 大小:1.68MB
返回 下载 相关 举报
云计算技术及应用ppt.ppt_第1页
第1页 / 共39页
云计算技术及应用ppt.ppt_第2页
第2页 / 共39页
点击查看更多>>
资源描述

《云计算技术及应用ppt.ppt》由会员分享,可在线阅读,更多相关《云计算技术及应用ppt.ppt(39页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、云计算技术及应用,大连理工大学计算机科学与技术学院2010年春季,基本情况,申彦明shenB810助教:齐恒clementqhB812Officehour:Fri3:30-4:30PMCoursewebsite:,教材内容,分布式系统的概况分布式与集群基本概念分布式数据库分布式文件系统GFS分布式编程MapReduce算法介绍搜索引擎与PageRank其它相关技术DataCenterBigTableAppEngine,Grading,HW:40%FinalProject:60%FinalprojectproposalProjectreports12teams,4-5students,Sylla

2、bus(Subjecttochange),Week2Mar8:Lecture1:IntroductionMar10:Lecture2:Map/ReduceTheoryandImplementation,HadoopWeek3Mar15:Lecture3&4:GuestSpeaker(8:00AM-11:35AM研教楼102)Mar17:Lecture5:DistributedFileSystemandtheGoogleFileSystemWeek4Mar22:Lecture6&7:GuestSpeaker(8:00AM-11:35AM研教楼102)Mar24:Lecture8:Distribu

3、tedGraphAlgorithmsandPageRankWeek5Mar29:Lecture9:IntroductiontoSomeProjectsMar31:Lecture10:DataCenters,Syllabus(Subjecttochange),Week6Apr5:Lecture11:SomeGoogleTechnologiesApr7:Lecture12:VirtualizationWeek7Lecture13&14:ProjectPresentationWeek8:NoclassWeek9:Lecture15&16:ProjectPresentation,GartnerRepo

4、rt,Top10StrategicTechnologyAreasfor2009VirtualizationCloudComputingServers:BeyondBladesWeb-OrientedArchitecturesEnterpriseMashupsSpecializedSystemsSocialSoftwareandSocialNetworkingUnifiedCommunicationsBusinessIntelligenceGreenInformationTechnology,Top10StrategicTechnologyAreasfor2010CloudComputingAd

5、vancedAnalyticsClientComputingITforGreenReshapingtheDataCenterSocialComputingSecurityActivityMonitoringFlashMemoryVirtualizationforAvailabilityMobileApplications,FromDesktop/HPC/GridstoInternetCloudsin30Years,HPCmovingfromcentralizedsupercomputerstogeographicallydistributeddesktops,clusters,andgrids

6、tocloudsoverlast30yearsR/DeffortsonHPC,clusters,Grids,P2P,andvirtualmachineshaslaidthefoundationofcloudcomputingthathasbeengreatlyadvocatedsince2007Locationofcomputinginfrastructureinareaswithlowercostsinhardware,software,datasets,space,andpowerrequirementsmovingfromdesktopcomputingtodatacenter-base

7、dclouds,WhatisCloudComputing?,1.Web-scaleproblems2.Largedatacenters3.Differentmodelsofcomputing4.Highly-interactiveWebapplications,1.“Web-Scale”Problems,Characteristics:Definitelydata-intensiveMayalsobeprocessingintensiveExamples:Crawling,indexing,searching,miningtheWebDatawarehousesSensornetworks“P

8、ost-genomics”lifesciencesresearchOtherscientificdata(physics,astronomy,etc.)Web2.0applications,Howmuchdata?,Googleprocesses20PBaday(2008)“allwordseverspokenbyhumanbeings”5EBCERNsLHCwillgenerate10-15PBayear,640Koughttobeenoughforanybody.,Whattodowithmoredata?,AnsweringfactoidquestionsPatternmatchingo

9、ntheWebWorksamazinglywellLearningrelationsStartwithseedinstancesSearchforpatternsontheWebUsingpatternstofindmoreinstances,HowdoImakemoney?,PetabytesofvaluablecustomerdataSittingidleinexistingdatawarehousesOverflowingoutofexistingdatawarehousesSimplybeingthrownawaySourceofdata:OLTPUserbehaviorlogsCal

10、l-centerlogsWebcrawls,publicdatasetsStructureddata(today)vs.unstructureddata(tomorrow)Howcananorganizationderivevaluefromallthisdata?,2.LargeDataCenters,Web-scaleproblems?Throwmoremachinesatit!CentralizationofresourcesinlargedatacentersNecessaryingredients:fiber,juice,andlandWhatdoOregon,Iceland,and

11、abandonedmineshaveincommon?ImportantIssues:EfficiencyRedundancyUtilizationSecurityManagementoverhead,3.DifferentComputingModels,UtilitycomputingWhybuymachineswhenyoucanrentcycles?Examples:AmazonsEC2PlatformasaService(PaaS)GivemeniceAPIandtakecareoftheimplementationExample:GoogleAppEngineSoftwareasaS

12、ervice(SaaS)Justrunitforme!Example:Gmail,“Whydoityourselfifyoucanpaysomeonetodoitforyou?”,4.WebApplications,Whatisthenatureoffuturesoftwareapplications?FromthedesktoptothebrowserSaaS=Web-basedapplicationsExamples:GoogleMaps,FacebookHowdowedeliverhighly-interactiveWeb-basedapplications?AJAX(asynchron

13、ousJavaScriptandXML)Ahackontopofamistakebuiltonsand,allheldtogetherbyducttapeandchewinggum?,SomeCloudDefinitions,IanFosteretaldefinedcloudcomputingasalarge-scaledistributedcomputingparadigm,thatisdrivenbyeconomicsofscale,inwhichapoolofabstractedvirtualized,dynamically-scalable,managedcomputingpower,

14、storage,platforms,andservicesaredeliveredondemandtoexternalcustomersovertheinternet(云计算是一种商业计算模型。它将计算任务分布在大量计算机构成的资源池上,使各种应用系统能够根据需要获取计算力、存储空间和各种软件服务。)IBMexpertsconsidercloudsthatcan:Hostavarietyofdifferentworkloads,includingbatch-stylebackendinteractive,user-facingapplicationsAllowworkloadstobedepl

15、oyedandscaled-outquicklythroughtherapidprovisioningofvirtualmachinesorphysicalmachinesSupportredundant,self-recovering,highlyscalableprogrammingmodelsthatallowworkloadstorecoverfromHW/SWfailuresMonitorresourceuseinrealtimetorebalanceallocationsondemand,InternetCloudGoals,Sharingofpeak-loadcapacityam

16、ongalargepoolofusers,improvingoverallresourceutilizationSeparationofinfrastructuremaintenancedutiesfromdomain-specificapplicationdevelopmentMajorcloudapplicationsincludeupgradedwebservices,distributeddatastorage,rawsupercomputing,andaccesstospecializedGrid,P2P,data-mining,andcontentnetworkingservice

17、s,ThreeAspectsinHardwarethatareNewinCloudComputing,Theillusionofinfinitecomputingresourcesavailableondemand,therebyeliminatingtheneedforclouduserstoplanfaraheadforprovisioningTheeliminationofanup-frontcommitmentbycloudusers,therebyallowingcompaniestostartsmallandincreasehardwareresourceswhenneededTh

18、eabilitytopaycomputingresourcesonashort-termbasisasneeded(e.g.,processorsbythehourandstoragebytheday)andreleasethemafterdoneandtherebyrewardingresourceconservation,SomeInnovativeCloudServicesandApplicationOpportunities,Smartandpervasivecloudapplicationsforindividuals,homes,communities,companies,andg

19、overnments,etc.CoordinatedCalendar,Itinerary,jobmanagement,events,andconsumerrecordmanagement(CRM)servicesCoordinatedwordprocessing,on-linepresentations,web-baseddesktops,sharingon-linedocuments,datasets,photos,video,anddatabases,etcDeployconventionalcluster,grid,P2P,socialnetworkingapplicationsincl

20、oudenvironments,morecost-effectivelyEarthboundApplicationsthatDemandElasticityandParallelismratherdatamovementCosts,OperationsinCloudComputing,UsersinteractwiththecloudtorequestserviceProvisioningtoolcarvesoutthesystemsfromthecloudconfigurationorreconfiguration,ordeprovisionTheserverscanbeeitherreal

21、orvirtualmachinesSupportingresourcesincludedistributedstoragesystem,datacenters,securitydevices,etc.,CloudComputingInstances,GoogleAmazonMicrosoftAzureIBMBlueCloud,GoogleCloudInfrastructure,Scheduler,Chubby,GFSmaster,Node,Node,Node,User,Application,Schedulerslave,GFSchunkserver,Linux,Node,MapReduceJ

22、ob,BigTableServer,GoogleCloudInfrastructure,AmazonElasticComputingCloud,SQS:SimpleQueueServiceEC2:RunningInstanceofVirtualMachinesEBS:ElasticBlockService,ProvidingtheBlockInterface,StoringVirtualMachineImagesS3:SimpleStorageService,SOAP,ObjectInterfaceSimpleDB:SimplifiedDatabase,MicrosoftAzurePlatfo

23、rm,Developer,Monitoring,ApplicationServer,ProvisioningManager,User,OpenSourceLinuxwithXen,TivoliMonitoringAgent,IBMBlueCloud,CostConsiderations:Power,Cooling,PhysicalPlant,andOperationalCosts,Costtechnologycostscostofsecurityetc.,Benefitsavailabilityopportunityconsolidationetc.,CostBreakdown,+Storag

24、e($/MByte/year)+Computing($/CPUCycles)+Networking($/bit),ResearchChallenges,ServiceavailabilityS3outage:authenticationserviceoverloadleadingtounavailabilityAppEnginepartialoutageprogrammingerrorGmail:siteunavailableSolutions:ThemanagementofaCloudComputingservicebyasinglecompanyresultsinasinglepointo

25、ffailure(SPF).IntheInternet,alargeISPusesmultiplenetworkproviderssothatfailurebyasinglecompanywillnottakethemofftheair.Similarly,weneedmultipleCloudComputingproviderstosupporteachothertoeliminateSPF.,ResearchChallenges,DataSecurityCurrentcloudofferingsareessentiallypublicratherthanprivatenetworks,ex

26、posingthesystemtomoreattackssuchasDDoSattacks.Solutions:Therearemanywellunderstoodtechnologiessuchasencryptedstorage,virtuallocalareanetworks,andnetworkmiddleboxes.,ResearchChallenges,DataTransferBottlenecksApplicationscontinuetobecomemoredata-intensive.Ifweassumeapplicationsmaybe“pulledapart”across

27、theboundariesofclouds,thismaycomplicatedataplacementandtransport.BothWANbandwidthandintra-cloudnetworkingtechnologyareperformancebottleneck.Industrialsolutions:Itisestimatedthat2/3ofthecostofWANbandwidthisconsumedbyhigh-endrouters,whereasonly1/3chargedbyfiberindustry.Wecanlowerthecostbyusingsimplerr

28、outersbuiltfromcommoditycomponentswithcentralizedcontrol,butresearchisheadingtowardsusinghigh-enddistributedrouters.,ResearchChallenges,SoftwareLicensingCurrentsoftwarelicensescommonlyrestrictthecomputersonwhichthesoftwarecanrun.Userspayforthesoftwareandthenpayanannualmaintenancefee.Manycloudcomputi

29、ngprovidersoriginallyreliedonopensourcesoftwareinpartbecausethelicensingmodelforcommercialsoftwareisnotagoodmatchtoUtilityComputing.Someideas:WecanencouragesalesforcesofsoftwarecompaniestosellproductsintoCloudComputing.Ortheycanimplementpay-per-usemodeltothesoftwaretoadapttoacloudenvironment.,Resear

30、chChallenges,ScalablestorageDifferencesbetweencommonstorageandcloudstorageThesystemisbuiltfrommanyinexpensivecommoditycomponentsthatoftenfailThesystemstoresamodestnumberoflargefilesTheworkloadsprimarilyconsistbothlargestreamingreadsandsmallrandomreads.Theworkloadsmanylarge,sequentialwritesthatappend

31、datatofilesandoncewritten,filesareseldommodifiedagain.Thecloudstorage(file)systemneedstosharemanyofthesamegoalsaspreviousdistributedfilesystemssuchasperformance,scalability,reliability,andavailability.Inaddition,itsdesignneedstobedrivenbykeyobservationsofthespecificworkloadsandtechnologicalenvironme

32、nt,bothcurrentandanticipated,thatreflectamarkeddeparturefromsomeearlierfilesystemdesignassumptions.GFSFilesaredividedintofixed-sizechunks,Chunksizeisoneofthekeydesignparameters.GFSchooses64MB,whichismuchlargerthantypicalfilesystemblocksizes.Themasterstoresthreemajortypesofmetadata:thefileandchunknam

33、espaces,themappingfromfilestochunks,andthelocationsofeachchunksreplicas.GFSsupportstheusualoperationstocreate,delete,open,close,read,andwritefiles.,ResearchChallenges,TransparentProgrammingModelProgramswrittenforcloudimplementationneedtobeautomaticallyparallelizedandexecutedonalargeclusterofcommodit

34、ymachines.Therun-timesystemshouldtakecareofthedetailsofpartitioningtheinputdata,schedulingtheprogramsexecutionacrossasetofmachines,handlingmachinefailures,andmanagingtherequiredinter-machinecommunication.Theprogrammingmodelshouldallowprogrammerswithoutmanyexperienceswithparallelanddistributedsystems

35、toeasilyutilizetheresourcesofalargedistributedsystem.MapReduceScalableDataProcessingonLargeClustersAwebprogrammingmodelimplementedforfastprocessingandgeneratinglargedatasetsAppliedmainlyinweb-scalesearchandcloudcomputingapplicationsUsersspecifyamapfunctiontogenerateasetofintermediatekey/valuepairsUs

36、ersuseareducefunctiontomergeallintermediatevalueswiththesameintermediatekey.,ResearchChallenges,SteveBallmersViewontheFutureofCloud,CloudcreatesopportunitiesandresponsibilitiesCloudlearnsandhelpsyoulearn,decideandtakeactionCloudenhancessocialandprofessionalinteractionsThecloudwantssmarterdevicesClou

37、ddrivesserveradvancesthat,inturn,drivethecloud,CloudComputingSkepticism,CLOUDCOMPUTING,Cloudcomputingissimplyabuzzwordusedtorepackagegridcomputingandutilitycomputing,bothofwhichhaveexistedfordecades.“Cloudcomputingissimplyabuzzwordusedtorepackagegridcomputingandutilitycomputing,bothofwhichhaveexiste

38、dfordecades.”,DefinitionofCloudComputing,LarryEllison,“Theinterestingthingaboutcloudcomputingisthatweveredefinedcloudcomputingtoincludeeverythingthatwealreadydo.Thecomputerindustryistheonlyindustrythatismorefashion-driventhanwomensfashion.MaybeImanidiot,butIhavenoideawhatanyoneistalkingabout.Whatisit?Itscompletegibberish.Itsinsane.Whenisthisidiocygoingtostop?”,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁