《高一数学必修一知识点归纳总结三篇.docx》由会员分享,可在线阅读,更多相关《高一数学必修一知识点归纳总结三篇.docx(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、高一数学必修一知识点归纳总结三篇 高一数学是高中数学的基础,想要学好高一数学理清各个知识点很重要,下面就是小编给大家带来的高一数学必修一知识点归纳,希望能帮助到大家! 高一数学必修一知识点归纳1 【集合与函数概念】 一、集合有关概念 1.集合的含义 2.集合的中元素的三个特性: (1)元素的确定性如:世界上的山 (2)元素的互异性如:由HAPPY的字母组成的集合H,A,P,Y (3)元素的无序性:如:a,b,c和a,c,b是表示同一个集合 3.集合的表示:如:我校的篮球队员,太平洋,大西洋,印度洋,北冰洋 (1)用拉丁字母表示集合:A=我校的篮球队员,B=1,2,3,4,5 (2)集合的表示方
2、法:列举法与描述法。 注意:常用数集及其记法:XKb1.Com 非负整数集(即自然数集)记作:N 正整数集:N_或N+ 整数集:Z 有理数集:Q 实数集:R 1)列举法:a,b,c 2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合xR|x-32,x|x-32 3)语言描述法:例:不是直角三角形的三角形 4)Venn图: 4、集合的分类: (1)有限集含有有限个元素的集合 (2)无限集含有无限个元素的集合 (3)空集不含任何元素的集合例:x|x2=-5 二、集合间的基本关系 1.“包含”关系子集 注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之:集合A不包
3、含于集合B,或集合B不包含集合A,记作AB或BA 2.“相等”关系:A=B(55,且55,则5=5) 实例:设A=x|x2-1=0B=-1,1“元素相同则两集合相等” 即:任何一个集合是它本身的子集。AA 真子集:如果AB,且A1B那就说集合A是集合B的真子集,记作AB(或BA) 如果AB,BC,那么AC 如果AB同时BA那么A=B 3.不含任何元素的集合叫做空集,记为 规定:空集是任何集合的子集,空集是任何非空集合的真子集。 4.子集个数: 有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集 三、集合的运算 运算类型交集并集补集 定义由所有属
4、于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作A交B),即AB=x|xA,且xB. 由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作A并B),即AB=x|xA,或xB). 【基本初等函数】 一、指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中1,且_. 当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand). 当是偶数时,正数的次方根有两个,
5、这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成(0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。 注意:当是奇数时,当是偶数时, 2.分数指数幂 正数的分数指数幂的意义,规定: 0的正分数指数幂等于0,0的负分数指数幂没有意义 指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂. 3.实数指数幂的运算性质 (二)指数函数及其性质 1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R. 注意:
6、指数函数的底数的取值范围,底数不能是负数、零和1. 2、指数函数的图象和性质 【函数的应用】 1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。 2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即: 方程有实数根函数的图象与轴有交点函数有零点. 3、函数零点的求法: 求函数的零点: 1(代数法)求方程的实数根; 2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点. 4、二次函数的零点: 二次函数. 1)0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点. 2)=0,方程有两相等实根(二重根),
7、二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点. 3)2,x|x-32 3)语言描述法:例:不是直角三角形的三角形 4)Venn图: 4、集合的分类: (1)有限集含有有限个元素的集合 (2)无限集含有无限个元素的集合 (3)空集不含任何元素的集合例:x|x2=-5 二、集合间的基本关系 1.“包含”关系子集 注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA 2.“相等”关系:A=B(55,且55,则5=5) 实例:设A=x|x2-1=0B=-1,1“元素相同则两集合相等” 即:任何一个集合是它本
8、身的子集。AA 真子集:如果AB,且AB那就说集合A是集合B的真子集,记作AB(或BA) 如果AB,BC,那么AC 如果AB同时BA那么A=B 3.不含任何元素的集合叫做空集,记为 规定:空集是任何集合的子集,空集是任何非空集合的真子集。 u有n个元素的集合,含有2n个子集,2n-1个真子集 二、函数 1、函数定义域、值域求法综合 2.、函数奇偶性与单调性问题的解题策略 3、恒成立问题的求解策略 4、反函数的几种题型及方法 5、二次函数根的问题一题多解 &指数函数y=ax aa_ab=aa+b(a0,a、b属于Q) (aa)b=aab(a0,a、b属于Q) (ab)a=aa_ba(a0,a、b
9、属于Q) 指数函数对称规律: 1、函数y=ax与y=a-x关于y轴对称 2、函数y=ax与y=-ax关于x轴对称 3、函数y=ax与y=-a-x关于坐标原点对称 &对数函数y=logax 如果,且,那么: 1+; 2-; 3. 注意:换底公式 (,且;,且;). 幂函数y=xa(a属于R) 1、幂函数定义:一般地,形如的函数称为幂函数,其中为常数. 2、幂函数性质归纳. (1)所有的幂函数在(0,+)都有定义并且图象都过点(1,1); (2)时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸; (3)时,幂函数的图象在区间上是减函数.在第一象
10、限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴. 方程的根与函数的零点 1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。 2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。 即:方程有实数根函数的图象与轴有交点函数有零点. 3、函数零点的求法: 1(代数法)求方程的实数根; 2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点. 4、二次函数的零点: 二次函数. (1)0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点. (2)=0,方程有两相
11、等实根,二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点. (3)0时,a的方向和a的方向相同,当2,x|x-32 3)语言描述法:例:不是直角三角形的三角形 4)Venn图: 4、集合的分类: (1)有限集含有有限个元素的集合 (2)无限集含有无限个元素的集合 (3)空集不含任何元素的集合例:x|x2=-5 二、集合间的基本关系 1.“包含”关系子集 注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA 2.“相等”关系:A=B(55,且55,则5=5) 实例:设A=x|x2-1=0B=-1,1“元素
12、相同则两集合相等” 即:任何一个集合是它本身的子集。AA 真子集:如果AB,且AB那就说集合A是集合B的真子集,记作AB(或BA) 如果AB,BC,那么AC 如果AB同时BA那么A=B 3.不含任何元素的集合叫做空集,记为 规定:空集是任何集合的子集,空集是任何非空集合的真子集。 u有n个元素的集合,含有2n个子集,2n-1个真子集 三、集合的运算 运算类型交集并集补集 定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作A交B),即AB=x|xA,且xB. 由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作A并B),即AB=x|xA,或
13、xB). 设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集) 例题: 1.下列四组对象,能构成集合的是() A某班所有高个子的学生B的艺术家C一切很大的书D倒数等于它自身的实数 2.集合a,b,c的真子集共有个 3.若集合M=y|y=x2-2x+1,xR,N=x|x0,则M与N的关系是. 4.设集合A=,B=,若AB,则的取值范围是 5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人, 两种实验都做错得有4人,则这两种实验都做对的有人。 6.用描述法表示图中阴影部分的点(含边界上的点)组成的集合M=
14、. 7.已知集合A=x|x2+2x-8=0,B=x|x2-5x+6=0,C=x|x2-mx+m2-19=0,若BC,AC=,求m的值 二、函数的有关概念 1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:AB为从集合A到集合B的一个函数.记作:y=f(x),xA.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合f(x)|xA叫做函数的值域. 注意: 1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。 求函数的定义域时列不等式组的主要依据是
15、: (1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零; (4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合. (6)指数为零底不可以等于零, (7)实际问题中的函数的定义域还要保证实际问题有意义. 相同函数的判断方法:表达式相同(与表示自变量和函数值的字母无关);定义域一致(两点必须同时具备) (见课本21页相关例2) 2.值域:先考虑其定义域 (1)观察法 (2)配方法 (3)代换法 3.函数图象知识归纳 (1)定义:在平面直角坐标系中,以函数y=
16、f(x),(xA)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(xA)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上. (2)画法 A、描点法: B、图象变换法 常用变换方法有三种 1)平移变换 2)伸缩变换 3)对称变换 4.区间的概念 (1)区间的分类:开区间、闭区间、半开半闭区间 (2)无穷区间 (3)区间的数轴表示. 5.映射 一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有确定的元素y与之对应
17、,那么就称对应f:AB为从集合A到集合B的一个映射。记作f:AB 6.分段函数 (1)在定义域的不同部分上有不同的解析表达式的函数。 (2)各部分的自变量的取值情况. (3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集. 补充:复合函数 如果y=f(u)(uM),u=g(x)(xA),则y=fg(x)=F(x)(xA)称为f、g的复合函数。 二.函数的性质 1.函数的单调性(局部性质) (1)增函数 设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1 如果对于区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在
18、这个区间上是减函数.区间D称为y=f(x)的单调减区间. 注意:函数的单调性是函数的局部性质; (2)图象的特点 如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的. (3).函数单调区间与单调性的判定方法 (A)定义法: 1任取x1,x2D,且x1 2作差f(x1)-f(x2); 3变形(通常是因式分解和配方); 4定号(即判断差f(x1)-f(x2)的正负); 5下结论(指出函数f(x)在给定的区间D上的单调性). (B)图象法(从图象上看升降) (C)复合函数的单调
19、性 复合函数fg(x)的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减” 注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集. 8.函数的奇偶性(整体性质) (1)偶函数 一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数. (2).奇函数 一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数. (3)具有奇偶性的函数的图象的特征 偶函数的图象关于y轴对称;奇函数的图象关于原点对称. 利用定义判断函数奇偶性的步骤: 1首先确定函数的
20、定义域,并判断其是否关于原点对称; 2确定f(-x)与f(x)的关系; 3作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数. (2)由f(-x)f(x)=0或f(x)/f(-x)=1来判定; (3)利用定理,或借助函数的图象判定. 9、函数的解析表达式 (1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域. (2)求函数的解析式的主要方法有: 1)凑配法 2)待定系数法 3)换元法 4)消参法 10.函数(小)值(定义
21、见课本p36页) 1利用二次函数的性质(配方法)求函数的(小)值 2利用图象求函数的(小)值 3利用函数单调性的判断函数的(小)值: 如果函数y=f(x)在区间a,b上单调递增,在区间b,c上单调递减则函数y=f(x)在x=b处有值f(b); 如果函数y=f(x)在区间a,b上单调递减,在区间b,c上单调递增则函数y=f(x)在x=b处有最小值f(b); 例题: 1.求下列函数的定义域: 2.设函数的定义域为,则函数的定义域为_ 3.若函数的定义域为,则函数的定义域是 4.函数,若,则= 6.已知函数,求函数,的解析式 7.已知函数满足,则=。 8.设是R上的奇函数,且当时,则当时= 在R上的
22、解析式为 9.求下列函数的单调区间: (2) 10.判断函数的单调性并证明你的结论. 11.设函数判断它的奇偶性并且求证 【二】 1、函数零点的定义 (1)对于函数)(xfy,我们把方程0)(xf的实数根叫做函数)(xfy的零点。 (2)方程0)(xf有实根函数()yfx的图像与x轴有交点函数()yfx有零点。因此判断一个函数是否有零点,有几个零点,就是判断方程0)(xf是否有实数根,有几个实数根。函数零点的求法:解方程0)(xf,所得实数根就是()fx的零点(3)变号零点与不变号零点 若函数()fx在零点0x左右两侧的函数值异号,则称该零点为函数()fx的变号零点。若函数()fx在零点0x左
23、右两侧的函数值同号,则称该零点为函数()fx的不变号零点。 若函数()fx在区间,ab上的图像是一条连续的曲线,则0)()( 2、函数零点的判定 (1)零点存在性定理:如果函数)(xfy在区间,ba上的图象是连续不断的曲线,并且有()()0fafb,那么,函数)(xfy在区间,ab内有零点,即存在),(0bax,使得0)(0xf,这个0x也就是方程0)(xf的根。 (2)函数)(xfy零点个数(或方程0)(xf实数根的个数)确定方法 代数法:函数)(xfy的零点0)(xf的根;(几何法)对于不能用求根公式的方程,可以将它与函数)(xfy的图象联系起来,并利用函数的性质找出零点。 (3)零点个数
24、确定 0)(xfy有2个零点0)(xf有两个不等实根;0)(xfy有1个零点0)(xf有两个相等实根;0)(xfy无零点0)(xf无实根;对于二次函数在区间,ab上的零点个数,要结合图像进行确定. 3、二分法 (1)二分法的定义:对于在区间,ab上连续不断且()()0fafb的函数()yfx,通过不断地把函数()yfx的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法; (2)用二分法求方程的近似解的步骤: 确定区间,ab,验证()()0fafb,给定精确度e; 求区间(,)ab的中点c;计算()fc; ()若()0fc,则c就是函数的零点; ()若()()0fafc,则令bc(此时零点0(,)xac);()若()()0fcfb,则令ac(此时零点0(,)xcb); 判断是否达到精确度e,即ab,则得到零点近似值为a(或b);否则重复至步. 第 13 页 共 13 页