特征线理论及应用ppt课件.ppt

上传人:飞****2 文档编号:30904679 上传时间:2022-08-07 格式:PPT 页数:151 大小:1.89MB
返回 下载 相关 举报
特征线理论及应用ppt课件.ppt_第1页
第1页 / 共151页
特征线理论及应用ppt课件.ppt_第2页
第2页 / 共151页
点击查看更多>>
资源描述

《特征线理论及应用ppt课件.ppt》由会员分享,可在线阅读,更多相关《特征线理论及应用ppt课件.ppt(151页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物第二章第二章 特征线理论及应用特征线理论及应用我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物气体动力学

2、中,有大量问题是用双曲型偏微分方程来描述的,气体动力学中,有大量问题是用双曲型偏微分方程来描述的,很难得到解析结果,在这种情况下,有两种数值解法:很难得到解析结果,在这种情况下,有两种数值解法:1)特征线数值解法特征线数值解法:求解域用特征线网格进行离散,求各:求解域用特征线网格进行离散,求各网格结点上的解;气体动力学中,有大量流动问题是用双曲网格结点上的解;气体动力学中,有大量流动问题是用双曲型偏微分方程来描述的,宜于用特征线方法求解。型偏微分方程来描述的,宜于用特征线方法求解。2)有限差分法有限差分法:求解域的有限差分网格一般是正交的,根:求解域的有限差分网格一般是正交的,根据由偏微分方程

3、构造的差分格式来求各网格结点上的解。据由偏微分方程构造的差分格式来求各网格结点上的解。2. 1 特征线理论特征线理论我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物 特征线的数学定义特征线的数学定义考虑一个一般的一阶双曲型偏微分方程:考虑一个一般的一阶双曲型偏微分方程:0121FyuAxuAx, y 是两个自变量,是两个自变量,u (x,y)是因变量。系数是因变量。系数A1

4、、A2及及非齐次项非齐次项F1可以是可以是 x,y,u 的函数。的函数。 (1)我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物将偏微分方程改写为:将偏微分方程改写为:01121FyuAAxuA)(设未知函数设未知函数u (x,y) 连续,连续,u 的一阶导数可以写作:的一阶导数可以写作: 【注注: :u的一阶导数可以不连续的一阶导数可以不连续】dyyudxxuduyudx

5、dyxudxdu偏微分方程的特征线定义为:xy平面内具有斜率为平面内具有斜率为 的曲线。的曲线。12AAdxdy(2)(3)我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物 11()0udy uAFxdxy12AAdxdy11AFdxdu沿着特征线或:011 FdxduA偏微分方程可化简为:代入代入 式式(4)01121FyuAAxuA)(得到偏微分方程的相容方程我吓了一跳

6、,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物【是平面上这样一族曲线:沿着此族中任一曲线(a),可以把待求物理量的一阶偏微分控制方程变换成等价的常微分控制方程(b),称为原偏微分方程或偏微分方程组的相容方程】u 特征线的第一个数学意义:特征线的第一个数学意义:12AAdxdy011 FdxduA(a) (b) 我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界

7、里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物u特征线的第二个数学意义:特征线的第二个数学意义:12121212FAdudyFdyA duuxAdyA dxAAdxdydxdyuudxyu1210AAuyFux11111212AFdxduAduFdxuyAdyA dxAAdxdy我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐

8、怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物上两式表明:上两式表明:沿着特征线,分母和分子均为零。沿着特征线,分母和分子均为零。,0000uuxy即沿着特征线,即沿着特征线,表明:表明:1 1)沿特征线因变量的一阶导数具有不定值,可以是不连续的,在这种情)沿特征线因变量的一阶导数具有不定值,可以是不连续的,在这种情况下,特征线是弱间断(第一类间断线)。况下,特征线是弱间断(第一类间断线)。2 2)在气体动力学中,特征线可以是弱扰动波传播的迹线,或者说弱扰动)在气体动力学中,特征线可以是弱扰动波传播的迹线,或者说弱扰动传播的迹线就是特

9、征线。传播的迹线就是特征线。 因此,因变量的一阶导数只允许有弱间断,如果在物理平面上有激因此,因变量的一阶导数只允许有弱间断,如果在物理平面上有激波出现,在强间断面上便无法建立因变量的全微分式,也就不能用特征线波出现,在强间断面上便无法建立因变量的全微分式,也就不能用特征线方法求解。方法求解。我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物例:一阶偏微分方程0322xyux

10、xu1050yyu),(的初始条件是的初始条件是),(yxu2)沿此特征线的相容方程)沿此特征线的相容方程3)u (2, 4) 的值的值用特征线法确定:用特征线法确定:1)通过点)通过点(2, 4)的特征线的特征线我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物解解:(1)对照一般形式的双曲型偏微分方程对照一般形式的双曲型偏微分方程0121FyuAxuAxdxdy2该方程对

11、应的系数:该方程对应的系数:A1=1, A2=2x, F1=3x2则特征线方程为:则特征线方程为:0322xyuxxu我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物积分得:积分得:01C2xy 为确定过点为确定过点(2,4)的特征线,将的特征线,将x=2, y=4,代入上式得:,代入上式得:12Cxy所以,所求的特征线方程是:所以,所求的特征线方程是:我吓了一跳,蝎子是多

12、么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物对上式积分,得:对上式积分,得:23Cxu2113xAFdxdu(2)偏微分方程的相容方程为:偏微分方程的相容方程为:如何确定 C2 ?我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢

13、?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物103 xu102C 初始条件初始条件 u (0 , y) =5y+102xy 及特征线方程及特征线方程u (0, 0) =10因此相容方程为:因此相容方程为:1810)4 , 2(3 xu我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物2. 2 2. 2 一维等熵流动的特征线数值解法一维等熵流动的特征线数值解法

14、基本方程与黎曼不变量基本方程与黎曼不变量0vvtxx(连续方程)(连续方程)(动量方程)(动量方程)(以一维等直截面管为例)(以一维等直截面管为例)基本方程基本方程10vvpvtxx我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物等熵流动中只有一个等熵流动中只有一个状态参量状态参量独立:独立:dpcdpdpdds21)()(p将基本方程中的将基本方程中的 用用 代替,得:代

15、替,得:ddp我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物基本方程可化为:基本方程可化为:0cpvcxvvtx10vppxtccxvc两式相加减两式相加减合并,基本方程可写作:合并,基本方程可写作:11()()()0pvptvcvcccvtxx我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个

16、活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物0 xGvcvtGv)()()(xpcxGtpctG11定义定义cdpG则基本方程化为以基本方程化为以v G 为新的未知函数的偏微分方程:为新的未知函数的偏微分方程:11()()()0pvptvcvcccvtxx我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测

17、没有错:表里边有一个活的生物0 xGvcvtGv)()()(基本方程基本方程偏微分方程偏微分方程0121FyuAxuA特征线特征线?相容方程?相容方程?我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物cvdtdx在x-t 平面上,把dx/dt=v c 曲线称为偏微分方程的特征线。CCxtvdtdxcvdtdxC表示第一族特征线表示第一族特征线;C 表示第二族特征线。表示第二

18、族特征线。我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物解相容方程解相容方程: :0dtGvd)(constcdpvconstcdpv我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的

19、猜测没有错:表里边有一个活的生物pB对多方气体:对多方气体:ccdcdp12Jcv12其相容方程的解为:其相容方程的解为:由由声速:声速:21dpcBd我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物沿着特征线, cvdtdx, cvdtdx()21vcJ黎曼不变量沿着特征线()21vcJ黎曼不变量结论:结论:我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美

20、丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物特征线的基本性质特征线的基本性质1)一维非定常流动中,平面一维非定常流动中,平面x-t上任一点,都有两条不同上任一点,都有两条不同族的特征线,沿各特征线有各自不同的黎曼不变量;族的特征线,沿各特征线有各自不同的黎曼不变量;2)特征线上参量特征线上参量v,c,p, 的一阶导数可以不连续,但这的一阶导数可以不连续,但这些参量本身是连续的,称因变量的一阶导数不连续的点叫些参量本身是连续的,称因变

21、量的一阶导数不连续的点叫做弱间断。如果初始某一点有弱间断,那么这个弱间断必做弱间断。如果初始某一点有弱间断,那么这个弱间断必定会沿着过该点的特征线向外传播定会沿着过该点的特征线向外传播。3)两个相邻的,不同类型流动区域的分界线,必定是特两个相邻的,不同类型流动区域的分界线,必定是特征线。征线。我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物 三类流态中的特征线三类流态中的特

22、征线vcc0v0定常均匀流动定常均匀流动相容关系描述的状态特征线相容关系描述的状态特征线xt特征线特征线(不代表波的传播迹线)(不代表波的传播迹线)我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物1J0J0J0J2J3J4J0J0J0Jxt(0)(I)(II)v/c0c/c0(0)(1)(2)(3)(4)简单波流动简单波流动特征线特征线相容关系描述的状态特征线相容关系描述的

23、状态特征线活塞运动迹线活塞运动迹线我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物复合波流动复合波流动特征线特征线相容关系描述的状态特征线相容关系描述的状态特征线xtc/c1v/c1C+C-7652348910234 5678910我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一

24、跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物 依赖区和影响区依赖区和影响区JcvJcv1212由于沿着两族特征线,分别有:由于沿着两族特征线,分别有:可以把可以把 J 和和 J 看作是两个新的函数,则看作是两个新的函数,则)(JJcJJv412我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物

25、利用 J 和 J表示的特征线方程为:13()4431()44CCdxvcJJdtdxvcJJdt第 I 族特征线斜率仅由 J- 决定;第 II 族特征线斜率仅由 J+ 决定。我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物 xtDABD点的依赖区点的依赖区MCC CC 在平面运动中,沿着特征线黎曼不变量保持不变,这在平面运动中,沿着特征线黎曼不变量保持不变,这一重要性质清楚

26、地揭示出流体动力学中的一些依赖关系。一重要性质清楚地揭示出流体动力学中的一些依赖关系。(,)(,0)(,)(,0)DDADDBJxtJxJxtJx 设设 t = 0 时各量沿时各量沿x轴的分布为轴的分布为v0(x), c0(x), 于是可知黎曼不变量的于是可知黎曼不变量的相应分布为相应分布为 。 则则(x,t)平面上任意一点平面上任意一点D(x,t)上上的状态,将直接由的状态,将直接由x轴上点轴上点A(xA,0), B(xB,0)两点上的状态决定。两点上的状态决定。00( ,0),( ,0)JxJx我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,

27、证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物所以,点所以,点 所处的状态将完全由且所处的状态将完全由且只由线段只由线段ABAB上的值决定,上的值决定,线段线段AB就称为点就称为点D的依赖区的依赖区。(,)DDD xt我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:

28、表里边有一个活的生物DMM点的影响区点的影响区xtAB C C 同样,能够受到同样,能够受到ABAB线线段间某点段间某点MM的初始值影响的初始值影响的区域,是由发自的区域,是由发自MM点的点的 与发自与发自MM点的点的 所包所包围的区域,而这个区域围的区域,而这个区域之外的地方,都不受之外的地方,都不受MM点点的影响。这个区域称为的影响。这个区域称为MM点的影响区点的影响区。CCPQ我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?

29、但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物例例:已知初始时刻:已知初始时刻 v(x,0), c(x,0)D (x3, t)A (x1, 0)MB (x2, 0)xt, 求求D点的点的v(x,t), c(x,t)C+C-我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物解:在D(x3 , t)点,有32(, )(,0)Jx tJx31(, )( ,0)Jx tJ

30、x22,11vcJvcJ根据:根据:1112222( ,0)12(,0)1JxvcJxvc我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物212222121333ccvvtxJtxJtxv),(),(),(2212412121333vvcctxJtxJtxc),(),()(),(得:得:)(JJcJJv412由由我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个

31、美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物2. 3 两个偏微分方程的特征线法两个偏微分方程的特征线法考虑下面两个偏微分方程组成的方程组:考虑下面两个偏微分方程组成的方程组:1234112342uuvvAAAAFxyxyuuvvBBBBFxyxy x, y是自变量,是自变量,u(x,y)和和v(x,y)是两个因变量。系数是两个因变量。系数A、B及非齐次项及非齐次项F可以是可以是 x、y、u和和v的函数,方程组是准线性的。的函数,方

32、程组是准线性的。我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物以上两个方程进行线性组合:以上两个方程进行线性组合:1222112111211424132311221323()()()()()()0()ABABxvAByABABFFxABvuyu112341212342()()0AAAAFxyxyBBBBFxyvvxyuvvuuu我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什

33、么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物 假设待求函数假设待求函数u(x,y)和和v(x,y)在在x,y平面上是连平面上是连续的,则连续函数的全微分为:续的,则连续函数的全微分为:duuu dydxxy dxdvvv dydxxy dx我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,

34、为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物上式作对比,可以发现,若存在一条斜率为下式的平面曲线:上式作对比,可以发现,若存在一条斜率为下式的平面曲线:1222142411211323()()()()ABABdydxABAB沿着该曲线,偏微分方程就化为全微分方程:沿着该曲线,偏微分方程就化为全微分方程:112113231122()()()0dudvABABFFdxdx我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为

35、什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物1 1)特征线方程)特征线方程式式 可化为:可化为:121231232441()()0()()0dydyAABBdxdxdydyAABBdxdx1222142411211323()()()()ABABdydxABAB我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物121234340

36、dydyAABBdxdxdydyAABBdxdx为使得关于为使得关于1 2的方程组有非零解,的方程组有非零解, 系数行列式为零,即:系数行列式为零,即:2()()0dydyabdxdx1331142332412442()aABA BbABA BA BA BA BA B化简行列式得:化简行列式得:其中,其中,我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物242Cbbadyd

37、xa对应于椭圆型方程,没有实数解对应于抛物型方程,过每一点有一条特征线对应于抛物型方程,过每一点有一条特征线对应于双曲型方程,过每一点有两条特征线对应于双曲型方程,过每一点有两条特征线240ba240ba240ba物理特征线方程物理特征线方程我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物 对于一个一阶的偏微分方程总是可以用对于一个一阶的偏微分方程总是可以用特征线法求解特征

38、线法求解; 但是对于两个一阶的偏微分方程组来说,但是对于两个一阶的偏微分方程组来说,只有双曲型方程才能利用两条特征线求出只有双曲型方程才能利用两条特征线求出两个因变量的数值解。两个因变量的数值解。我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物2 2)相容方程)相容方程121231232441()()0()()0dydyAABBdxdxdydyAABBdxdx1234123

39、41212()()()()dydyBBBBdxdxdydyAAAAdxdx 由:由:解出解出12, 代入全微分方程代入全微分方程112113231122()()()0dudvABABFFdxdx我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物32234224433443341442133243344334()()()()()()()()CCCCCA BA BA BA Bdv

40、dyduA BA BA BA BdxdydyF BA FF BA FdududyA BA BA BA Bdx 12C+,C -3C+,C -C+,C -XdyX()dxdydyX(),()dudx 求得相容方程:求得相容方程:我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物MNt y x 2.4 初初 值值 (Cauchy) 问问 题:题:两个偏微分方程的特征线数值解法两个

41、偏微分方程的特征线数值解法p(xp,yp) C+C-FGMN是物理平面上一条不是特是物理平面上一条不是特征线的曲线,沿着该线各点征线的曲线,沿着该线各点的的x,y和和u,v都是已知的,求此都是已知的,求此曲线邻域内的解。曲线邻域内的解。我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物,FFxy()()FMCFMFNCFNyydydxxxyydydxxx1)先确定)先确定F点

42、的位置点的位置由由C-和和C+的特征线方程:的特征线方程:求得求得F点的位置点的位置我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物,FFuv2)求)求F点处的因变量点处的因变量 值值()()FMCFMFNCFNvvdvduuuvvdvduuu()()()()()()()()NMCNCMFCCNMCNCMFCCdvdvvvuududuudvdvdudududuuuvvdvd

43、vvdududvdv我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物上式中包含的上式中包含的()()FMCFMFNCFNyydyduuuyydyduuu我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感

44、到愉快,证实我的猜测没有错:表里边有一个活的生物3)由)由F点处的因变量点处的因变量 值,将值,将 代代 入特征线方程,重新计算特征线方程中的系数,重复入特征线方程,重新计算特征线方程中的系数,重复1)2) 过程,重新计算过过程,重新计算过M点的点的C和过和过N点的点的C两特征线的坐两特征线的坐 标,反复迭代,一直计算到满足精度为止。标,反复迭代,一直计算到满足精度为止。,FFuv,22FMFMuuvv我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样

45、一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物上述过程重复进行,从而得到一条新的初值线上述过程重复进行,从而得到一条新的初值线 ,再沿,再沿着新初值线重复下一轮运算过程,一直可以计算到初值线着新初值线重复下一轮运算过程,一直可以计算到初值线的的AB与与K包围的区域。包围的区域。tANt y x C+C-FGMBKGH我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错

46、:表里边有一个活的生物( , )u v 当已知函数的初值线当已知函数的初值线 ,则可以沿着,则可以沿着x,y平面上平面上M点点的特征线的方向,用常微分方程组求解的特征线的方向,用常微分方程组求解u,v两个曲面的函数值,两个曲面的函数值,而不是沿任意方向用偏微分方程组求解而不是沿任意方向用偏微分方程组求解u,v两个曲面。两个曲面。 由于在每条特征线上各有自己的相容性方程,而每个相容由于在每条特征线上各有自己的相容性方程,而每个相容性方程中又有性方程中又有du,dv两个函数的微分,所以单个相容性方程无两个函数的微分,所以单个相容性方程无法求解;但任意点法求解;但任意点p(xp,yp)上有两条特征线

47、到达,其上的函数上有两条特征线到达,其上的函数全微分全微分du+ , du- , dv+ , dv- 虽然沿着不同的特征线发展,其终值虽然沿着不同的特征线发展,其终值up,vp却是同一个,因此经过却是同一个,因此经过P点的两条特征线上的各一个相点的两条特征线上的各一个相容方程可以联立求解。容方程可以联立求解。总总 结结我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物AMNA

48、 A 点的依赖区点的依赖区BB B 点的影响区点的影响区xyyx初值线初值线初值线初值线D平面二维的依赖区和影响区平面二维的依赖区和影响区我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物1、扰动、扰动: 当流场中的一个区域,由于物体运动、物面转折或炸药爆炸等原因使气流参数发生变化,破坏了原来的平衡状态时,即为气体受到了扰动。2、波:、波:气体的扰动都是以波的形式向流场各处传

49、播的。在超声速流场 中,在某处使气体膨胀或者压缩的任何扰动都是通过等熵波(连续波)或激波(间断波)传播到流场一定范围内。2.5 二维定常超音速无旋流动的特征线解法二维定常超音速无旋流动的特征线解法我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物3、弱扰动波、弱扰动波 :压缩扰动(p0); 膨胀扰动(p0);1;1;1pvppc我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把

50、它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物 活塞右移形成压缩波活塞右移形成压缩波 活塞左移形成膨胀波活塞左移形成膨胀波p1+dpp1-dp2.5.1 弱扰动波的一维传播弱扰动波的一维传播定常问题?非定常问题?定常问题?非定常问题?我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁