《难点解析京改版八年级数学下册第十四章一次函数课时练习练习题(含详解).docx》由会员分享,可在线阅读,更多相关《难点解析京改版八年级数学下册第十四章一次函数课时练习练习题(含详解).docx(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、京改版八年级数学下册第十四章一次函数课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知点A(2,y1)和B(1,y2)都在直线y3x1上,则y1,y2的大小关系是()Ay1y2By1y2Cy1y
2、2D大小不确定2、一次函数ykx+b的图象如图所示,则下列说法错误的是()Ay随x的增大而减小Bk0,b0C当x4时,y0D图象向下平移2个单位得yx的图象3、关于函数有下列结论,其中正确的是( )A图象经过点B若、在图象上,则C当时,D图象向上平移1个单位长度得解析式为4、在ABC中,ABAC,点B,点C在直角坐标系中的坐标分别是(2,0),(2,0),则点A的坐标可能是( )A(0,2)B(0,0)C(2,2)D(2,2)5、点在( )A第一象限B第二象限C第三象限D第四象限6、若直线y=kx+b经过A(0,2)和B(3,-1)两点,那么这个一次函数关系式是( )Ay=2x+3By=3x+
3、2Cy=-x+2Dy=x-17、已知正比例函数ykx的函数值y随x的增大而减小,则一次函数ykxk的图象大致是()ABCD8、下列命题为真命题的是( )A过一点有且只有一条直线与已知直线平行B在同一平面内,若,则C的算术平方根是9D点一定在第四象限9、甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,到达目的地后停止. 甲、乙两人之间的距离y(m)与甲所用时间x(min)之间的函数关系如图所示,给出下列结论:A,B之间的距离为1200m;乙行走的速度是甲的1.5倍;b800;a34,其中正确的结论个数为()A4个B3个C2个D1
4、个10、如图,在平面直角坐标系中,线段AB的端点为A(2,1),B(1,2),若直线ykx1与线段AB有交点,则k的值不能是()A-2B2C4D4第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、先设出_,再根据条件确定解析式中_,从而得出函数解析式的方法,叫待定系数法2、将函数y3x4 的图像向上平移5个单位长度,所得图像对应的函数表达式为_3、已知点在轴上,则_;点的坐标为_4、已知直线yax1与直线y=2x+1平行,则直线yax1不经过第 _象限5、平面直角坐标系中,点P(3,4)到x轴的距离是_三、解答题(5小题,每小题10分,共计50分)1、如图1,A(2,6)
5、,C(6,2),ABy轴于点B,CDx轴于点D(1)求证:AOBCOD;(2)如图2,连接AC,BD交于点P,求证:点P为AC中点;(3)如图3,点E为第一象限内一点,点F为y轴正半轴上一点,连接AF,EFEFCE且EFCE,点G为AF中点连接EG,EO,求证:OEG452、在正比例函数y=(k-3)x|k-3|中,函数值y随x的增大而减小,求k的值3、红太阳大酒店客房部有三人间、双人间和单人间客房,收费数据如下表(例如三人间普通间客房每人每天收费50元)为吸引客源,在五一黄金周期间进行优惠大酬宾,凡团体入住一律五折优惠一个50人的旅游团在五月二号到该酒店住宿,租住了一些三人间、双人间普通客房
6、,并且每个客房正好住满,一天一共花去住宿费1510元普通间(元/人/天)豪华间(元/人/天)贵宾间(元/人/天)三人间50100500双人间70150800单人间1002001500(1)三人间、双人间普通客房各住了多少间?(2)设三人间共住了x人,则双人间住了 人,一天一共花去住宿费用y元表示,写出y与x的函数关系式;(3)在直角坐标系内画出这个函数图象;(4)如果你作为旅游团团长,你认为上面这种住宿方式是不是费用最少?为什么?4、如图,在平面直角坐标系中,O为坐标原点,直线yx+8与x轴交于点A,与y轴交于点B(1)A点坐标为 ,B点坐标为 ;(2)若动点D从点B出发以4个单位/秒的速度沿
7、射线BO方向运动,过点D作OB的垂线,动点E从点O出发以2个单位/秒的速度沿射线OA方向运动,过点E作OA的垂线,两条垂线相交于点P,若D、E两点同时出发,此时,我们发现点P在一条直线上运动,请求这条直线的函数解析式(3)在(2)的基础上若点P也在直线y3x上,点Q在坐标轴上,当ABP的面积等于BAQ面积时,请直接写出点Q的坐标5、为丰富同学们的课余活动,某校成立了篮球课外兴趣小组,计划购买一批篮球,需购买、两种不同型号的篮球共300个已知购买3个型篮球和2个型篮球共需340元,购买2个型篮球和1个型篮球共需要210元(1)求购买一个型篮球、一个型篮球各需多少元?(2)若该校计划投入资金元用于
8、购买这两种篮球,设购进的型篮球为个,求关于的函数关系式;(3)学校在体育用品专卖店购买、两种型号篮球共300个,经协商,专卖店给出如下优惠:种球每个降价8元,种球打9折,计算下来,学校共付费16740元,学校购买、两种篮球各多少个?-参考答案-一、单选题1、A【解析】【分析】首先判定出一次函数的增减性为y随x的增大而减小,然后即可判断出y1,y2的大小关系【详解】解:一次函数y3x1中,k30,y随x的增大而减小,21,y1y2故选:A【点睛】此题考查了一次函数的增减性,比较一次函数中函数值的大小,解题的关键是根据题意判断出一次函数的增减性2、B【解析】【分析】由一次函数的图象的走势结合一次函
9、数与轴交于正半轴,可判断A,B,由图象可得:当x4时,函数图象在轴的下方,可判断C,先求解一次函数的解析式,再利用一次函数图象的平移可判断D,从而可得答案.【详解】解:一次函数ykx+b的图象从左往右下降,所以y随x的增大而减小,故A不符合题意;一次函数ykx+b, y随x的增大而减小,与轴交于正半轴,所以 故B符合题意;由图象可得:当x4时,函数图象在轴的下方,所以y0,故C不符合题意;由函数图象经过 ,解得: 所以一次函数的解析式为: 把向下平移2个单位长度得:,故D不符合题意;故选B【点睛】本题考查的是一次函数的性质,一次函数的平移,利用待定系数法求解一次函数的解析式,掌握“一次函数的图
10、象与性质”是解本题的关键.3、D【解析】【分析】根据题意易得,然后根据一次函数的图象与性质可直接进行排除选项【详解】解:A、当x=-1时,则有y=-2(-1)-2=0,故点不在一次函数的图象上;不符合题意;B、,y随x的增大而减小,若、在图象上,则有,即,故不符合题意;C、当y=0时,则有-2x-2=0,解得x=-1,所以当x-1时,y0,则当时,故不符合题意;D、图象向上平移1个单位长度得解析式为,正确,故符合题意;故选D【点睛】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键4、A【解析】【分析】由题意可知BOCO,又ABAC,得点A在y轴上,即可求解【详解】解:
11、由题意可知BOCO,又ABAC,AOBC,点A在y轴上,选项A符合题意,B选项三点共线,不能构成三角形,不符合题意;选项C、D都不在y轴上,不符合题意;故选:A【点睛】本题考查了平面直角坐标系点的特征,解题关键是分析出点A的位置5、C【解析】【分析】根据各象限内点的坐标特征解答【详解】解:点的横坐标小于0,纵坐标小于0,点所在的象限是第三象限故选:C【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(,);第二象限(,);第三象限(,);第四象限(,)6、C【解析】【分析】把两点的坐标代入函数解析式中,解二元一次方程组即可求
12、得k与b的值,从而求得一次函数解析式【详解】解:由题意得:解得:故所求的一次函数关系为故选:C【点睛】本题考查了用待定系数法求一次函数的解析式,其一般步骤是:设函数解析式、代入、求值、求得解析式7、C【解析】【分析】由题意易得k0,然后根据一次函数图象与性质可进行排除选项【详解】解:正比例函数ykx(k0)函数值随x的增大而减小,k0,k0,一次函数ykxk的图象经过一、二、四象限;故选:C【点睛】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键8、B【解析】【分析】直接利用平行线的判定和性质、算术平方根的定义以及点的坐标特点分别判断即可【详解】解:A、过直线外一点有
13、且只有一条直线与已知直线平行,原命题是假命题;B、在同一平面内,如果ab,bc,则a/c,原命题是真命题;C、的算术平方根是3,原命题是假命题;D、若a0,则a20,则点(1,a2)在x轴上,故原命题是假命题;故选:B【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题判断命题的真假关键是要熟悉课本中的性质定理9、A【解析】【分析】由图象所给信息对结论判断即可【详解】由图象可知当x=0时,甲、乙两人在A、B两地还未出发故A,B之间的距离为1200m故正确前12min为甲、乙的速度和行走了1200m故由图象可知乙用了24-4=20min走完了1200m则则故正确又两人相遇
14、时停留了4min两人相遇后从16min开始继续行走,由图象x=24时的拐点可知,到24min乙到达目的地则两人相遇后行走了24-16=8min,两人之间的距离为8100=800米则b=800故正确从24min开始为甲独自行走1200-800=400m则t=min故a=24+10=34故正确综上所述均正确,共有四个结论正确故选:A【点睛】本题考查了从函数图象获取信息,运用数形结合的思想是解题的关键10、B【解析】【分析】当直线y=kx1过点A时,求出k的值,当直线y=kx1过点B时,求出k的值,介于二者之间的值即为使直线y=kx1与线段AB有交点的x的值【详解】解:当直线y=kx1过点A时,将A
15、(2,1)代入解析式y=kx1得,k=1,当直线y=kx1过点B时,将B(1,2)代入解析式y=kx1得,k=3,|k|越大,它的图象离y轴越近,当k3或k-1时,直线y=kx1与线段AB有交点故选:B【点睛】本题考查了两直线相交或平行的问题,解题的关键是掌握AB是线段这一条件,不要当成直线二、填空题1、 解析式 未知的系数【解析】【分析】根据待定系数法的概念填写即可【详解】解:先设出函数的解析式,再根据条件确定解析式中未知的系数,从而得出函数解析式的方法,叫待定系数法,故答案为:解析式 未知的系数【点睛】本题考查了待定系数法的概念,做题的关键是牢记概念2、#y=1+3x【解析】【分析】直接利
16、用一次函数平移规律“上加下减”求解即可【详解】解:将一次函数的图象向上平移5个单位长度,平移后所得图象对应的函数关系式为:,故答案为:【点睛】此题主要考查了一次函数图象的平移,熟练记忆函数平移规律是解题关键3、 【解析】【分析】根据轴上的点,纵坐标为0,求出m值即可【详解】解:点在轴上,解得,则;点的坐标为(-2,0);故答案为:-3,(-2,0)【点睛】本题考查了坐标轴上点的坐标特征,解题关键是明确轴上的点,纵坐标为04、二【解析】【分析】根据两直线平行一次项系数相等,求出a,即可判断yax1经过的象限【详解】解:直线yax1与直线y=2x+1平行, a=2,直线yax1的解析式为y2x1直
17、线y2x1 ,经过一、三、四象限,不经过第二象限;故答案为:二【点睛】本题考查了一次函数图象的性质与系数之间的关系,两直线平行一次项系数相等是解题的关键5、4【解析】【分析】根据点的坐标表示方法得到点P(3,4)到x轴的距离是纵坐标的绝对值即|4|,然后去绝对值即可【详解】解:点P(3,-4)到x轴的距离为|4|=4故答案为:4【点睛】此题主要考查了点到坐标上的距离,正确掌握点的坐标性质是解题关键三、解答题1、(1)见解析;(2)见解析;(3)见解析【解析】【分析】(1)根据SAS即可证明AOBCOD;(2)过点作CHx轴,交BD于点H,得出ABCHOD,由平行线的性质得BAP=HCP,由轴得
18、DCH=ODC=90,由AOBCOD得OB=OD,故可得ODB=45,从而得出CHD=CDH=45,推出CH=CD=AB,根据AAS证明ABPCHP,得出AP=CP即可得证;(3)延长EG到,使GM=GE,连接AM,OM,延长EF交于点J,根据SAS证明AGMFGE,得出AM=EF,AMG=GEF,故AMEJ,由平行线的性质得出MAO=AJE,进而推出MAO=ECO,根据SAS证明MAOECO,故OM=OE,AOM=EOC,即可证明OEG=45【详解】(1)ABy轴于点,轴于点,ABO=CDO=90,A(-2,6),C(6,2),AB=CD=2,OB=OD=6,AOBCOD(SAS);(2)如
19、图2,过点作CHx轴,交BD于点H,ABCHOD,BAP=HCP,CDx轴,DCH=ODC=90,AOBCOD,OB=OD,ODB=45,CHD=ODB=45,CDH=90-45=45,CH=CD=AB, 在ABP与CHP中,APB=CPHBAP=HCPAB=CH,ABPCHP(AAS),AP=CP,即点为AC中点;(3)如图3,延长EG到,使GM=GE,连接AM,OM,延长EF交于点J,AG=GF,AGE=FGE,GM=GE,AGMFGE(SAS),AM=EF,AMG=GEF,AMEJ,MAO=AJE,EF=EC,AM=EC,AOC=CEJ=90,AJE+EJO=180,EJO+ECO=18
20、0,AJE=ECO,MAO=ECO,AO=CO,MAOECO(SAS),OM=OE,AOM=EOC,MOE=AOC=90,MEO=45,即OEG=45【点睛】本题考查全等三角形的判定与性质,利用做辅助线作全等三角形是解决本题的关键2、2【解析】【分析】根据正比例函数得出|k-3|=1,解得解得k1=4, k2=2,函数值y随x的增大而减小,可得k-30,根据不等式解集取舍即可【详解】解:根据题意,可得|k-3|=1且k-30,k-3=1或k-3=-1,解得k1=4, k2=2,k-30,k3,k=2【点睛】本题考查正比例函数定义以及自变量函数性质,掌握正比例函数定义以及自变量函数性质是解题关键
21、3、(1)三人间8间,双人间13间;(2)(50x),y10x+1750(0x50,且x为整数);(3)见解析;(4)不是费用最少的,理由是y随x的增大而减小,所以最小值是x48时费用1270元【解析】【分析】分别设三人间和双人间为m、n,根据人数和钱数列方程组求解;根据收费列出表达式整理即可;因为x为人数,并且房间刚好住满所以应该是3的倍数,又剩下的人住双人间所以是2的倍数,因此x应该为6的倍数【详解】解:(1)设租住三人间m间,双人间n间,根据题意,解得,三人间8间,双人间13间;(2)双人间住了(50x)人,根据题意y50x+70(50x)50%即y10x+1750(0x50,且x为整数
22、);(3)因为两种房间正好住满所以x的值为3的倍数而(50x)还是2的倍数因此,所作图象上一些点:(0,1750),(6,1690),(12,1630),(18,1570),(24,1510),(30,1450),(36,1390),(42,1330),(48,1270)(4)不是费用最少的,理由是y随x的增大而减小,所以最小值是x48时费用1270元【点睛】本题主要考查二元一次方程组的实际应用,一次函数的实际应用,解题的关键在于能正确理解题意4、(1)(6,0)、(0,8);(2)y82x;(3)点Q的坐标为:(0,)或(,0)或(,0)或(0,)【解析】【分析】(1)令x0,则y8,令y0
23、,则x6,即可求解;(2)由题意得: ,从而得到 ,进而得到点P(2t,84t),则有x2t,y84t,即可求解;(3)分两种情况:当点Q在AB下方时,当点Q在AB上方时,即可求解【详解】解:(1)yx+8,令x0,则y8,令y0,则x6,A点坐标为(6,0),B点坐标为(0,8);(2)由题意得:,点P(2t,84t),则x2t,y84t,故点P所在的直线表达式为:y82x;(3)当点Q在AB下方时,将y3x与y82x联立并解得:x,y,即点P(,),当ABP的面积等于BAQ面积时,点Q在过点P且平行于AB的直线上,设过点P且平行于AB的直线表达式为:yx+b,将点P的坐标代入上式得:+b,
24、解得:b,故函数的表达式为:yx+,当x0时,y,当y0时,x,即点Q(0,)或(,0)当点Q在AB上方时,同理可得:点Q的坐标为:(,0)或(0,);综上点Q的坐标为:(0,)或(,0)或(,0)或(0,)【点睛】本题主要考查了一次函数的图象和性质,一次函数与动点问题,熟练掌握一次函数的图象和性质是解题的关键5、(1)一个A型篮球为80元,一个B型篮球为50元;(2)函数解析式为:W=30t+15000(0t300);(3)A型篮球120个,则B型篮球为180个【解析】【分析】(1)设一个A型篮球为x元,一个B型篮球为y元,根据题意列出方程组求解即可得;(2)A型篮球t个,则B型篮球为(30
25、0-t)个,根据单价、数量、总价的关系即可得;(3)根据A型篮球与B型篮球的优惠政策求出单价,然后代入(2)解析式中求解即可得【详解】解:(1)设一个A型篮球为x元,一个B型篮球为y元,根据题意可得:3x+2y=3402x+y=210,解得:x=80y=50,一个A型篮球为80元,一个B型篮球为50元;(2)A型篮球t个,则B型篮球为(300-t)个,根据题意可得:W=80t+50300-t=30t+15000(0t300),函数解析式为:W=30t+15000(0t300);(3)根据题意可得:A型篮球单价为(80-8)元,B型篮球单价为500.9元,则16740=(80-8)t+500.9300-t,解得:t=120,300-t=180,A型篮球120个,则B型篮球为180个【点睛】题目主要考查二元一次方程组及一次函数的应用,理解题意,列出相应方程是解题关键