难点详解沪科版九年级数学下册第24章圆章节练习试卷(含答案解析).docx

上传人:可****阿 文档编号:30775620 上传时间:2022-08-06 格式:DOCX 页数:31 大小:1.13MB
返回 下载 相关 举报
难点详解沪科版九年级数学下册第24章圆章节练习试卷(含答案解析).docx_第1页
第1页 / 共31页
难点详解沪科版九年级数学下册第24章圆章节练习试卷(含答案解析).docx_第2页
第2页 / 共31页
点击查看更多>>
资源描述

《难点详解沪科版九年级数学下册第24章圆章节练习试卷(含答案解析).docx》由会员分享,可在线阅读,更多相关《难点详解沪科版九年级数学下册第24章圆章节练习试卷(含答案解析).docx(31页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、沪科版九年级数学下册第24章圆章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、等边三角形、等腰三角形、矩形、菱形中既是轴对称图形,又是中心对称图形的个数是( )A2个B3个C4个D5个2、小明将图

2、案绕某点连续旋转若干次,每次旋转相同角度,设计出一个外轮廓为正六边形的图案(如图),则可以为( )A30B60C90D1203、已知O的半径为4,则点A在( )AO内BO上CO外D无法确定4、点P(3,2)关于原点O的对称点的坐标是()A(3,2)B(3,2)C(3,2)D(2,3)5、若的圆心角所对的弧长是,则此弧所在圆的半径为( )A1B2C3D46、的边经过圆心,与圆相切于点,若,则的大小等于( )ABCD7、如图,AB是O的直径,弦,则阴影部分图形的面积为( )ABCD8、如图,DC是O的直径,弦ABCD于M,则下列结论不一定成立的是()AAM=BMBCM=DMCD9、在直径为10cm

3、的圆柱形容器内装入一些水以后,截面如图所示,若水面宽cm,则水的最大深度为( )A1cmB2cmC3cmD4cm10、在ABC中,点O为AB中点以点C为圆心,CO长为半径作C,则C 与AB的位置关系是( )A相交B相切C相离D不确定第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,半圆O中,直径AB30,弦CDAB,长为6,则由与AC,AD围成的阴影部分面积为_2、在平面直角坐标系中,已知点与点关于原点对称,则_,_3、已知如图,AB=8,AC=4,BAC=60,BC所在圆的圆心是点O,BOC=60,分别在、线段AB和AC上选取点P、E、F,则PE+EF+FP的最小

4、值为_4、如图,PM,PN分别与O相切于A,B两点,C为O上异于A,B的一点,连接AC,BC若P58,则ACB的大小是_5、数学兴趣活动课上,小方将等腰的底边BC与直线l重合,问:(1)如图(1)已知,点P在BC边所在的直线l上移动,小方发现AP的最小值是_;(2)如图(2)在直角中,点D是CB边上的动点,连接AD,将线段AD顺时针旋转60,得到线段AP,连接CP,线段CP的最小值是_三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系xOy中,对于点P,O,Q给出如下定义:若OQPOPQ且PO2,我们称点P是线段OQ的“潜力点”已知点O(0,0),Q(1,0)(1)在P1(0,

5、-1),P2(,),P3(-1,1)中是线段OQ的“潜力点”是_;(2)若点P在直线yx上,且为线段OQ的“潜力点”,求点P横坐标的取值范围;(3)直线y2xb与x轴交于点M,与y轴交于点N,当线段MN上存在线段OQ 的“潜力点”时,直接写出b的取值范围2、在平面直角坐标系xOy中,给出如下定义:若点P在图形M上,点Q在图形N上,称线段PQ长度的最小值为图形M,N的“近距离”,记为d(M,N),特别地,若图形M,N有公共点,规定d(M,N)0已知:如图,点A(,0),B(0,)(1)如果O的半径为2,那么d(A,O) ,d(B,O) (2)如果O的半径为r,且d(O,线段AB)=0,求r的取值

6、范围;(3)如果C(m,0)是x轴上的动点,C的半径为1,使d(C,线段AB)r,据此可得答案【详解】解:O的半径r=4,且点A到圆心O的距离d=5,dr,点A在O外,故选:C【点睛】本题主要考查点与圆的位置关系,点与圆的位置关系有3种设O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外dr;点P在圆上d=r;点P在圆内dr4、B【分析】根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(x,y),即关于原点的对称点,横纵坐标都变成相反数”解答【详解】解:点P(3,2)关于原点O的对称点P的坐标是(3,2)故选:B【点睛】本题主要考查了关于原点对称的点的坐标的特点,正确掌握横

7、纵坐标的关系是解题关键5、C【分析】先设半径为r,再根据弧长公式建立方程,解出r即可【详解】设半径为r,则周长为2r,120所对应的弧长为解得r=3故选C【点睛】本题考查弧长计算,牢记弧长公式是本题关键6、A【分析】连接,根据圆周角定理求出,根据切线的性质得到,根据直角三角形的性质计算,得到答案【详解】解:连接, ,与圆相切于点,故选:A【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键7、D【分析】根据垂径定理求得CE=ED=;然后由圆周角定理知COE=60然后通过解直角三角形求得线段OC,然后证明OCEBDE,得到求出扇形COB面积,即可得出答案【详解

8、】解:设AB与CD交于点E,AB是O的直径,弦CDAB,CD=2,如图,CE=CD=,CEO=DEB=90,CDB=30,COB=2CDB=60,OCE=30,又,即,在OCE和BDE中,OCEBDE(AAS),阴影部分的面积S=S扇形COB=,故选D【点睛】本题考查了垂径定理、含30度角的直角三角形的性质,全等三角形的性质与判定,圆周角定理,扇形面积的计算等知识点,能知道阴影部分的面积=扇形COB的面积是解此题的关键8、B【分析】根据垂径定理“垂直于弦的直径平分这条弦,并且平分弦所对的两条弧”进行判断即可得【详解】解:弦ABCD,CD过圆心O,AM=BM,即选项A、C、D选项说法正确,不符合

9、题意,当根据已知条件得CM和DM不一定相等,故选B【点睛】本题考查了垂径定理,解题的关键是掌握垂径定理9、B【分析】连接OB,过点O作OCAB于点D,交O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而得出CD的长即可【详解】解:连接OB,过点O作OCAB于点D,交O于点C,如图所示:AB=8cm,BD=AB=4(cm),由题意得:OB=OC=5cm,在RtOBD中,OD=(cm),CD=OC-OD=5-3=2(cm),即水的最大深度为2cm,故选:B【点睛】本题考查了垂径定理、勾股定理等知识;根据题意作出辅助线,构造出直角三角形是解答此题的关键10、B【分析】根据等腰三角形

10、的性质,三线合一即可得,根据三角形切线的判定即可判断是的切线,进而可得C 与AB的位置关系【详解】解:连接,,点O为AB中点CO为C的半径,是的切线,C 与AB的位置关系是相切故选B【点睛】本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键二、填空题1、45【分析】连接OC,OD,根据同底等高可知SACD=SOCD,把阴影部分的面积转化为扇形OCD的面积,利用扇形的面积公式S=来求解【详解】解:连接OC,OD,直径AB=30,OC=OD=,CDAB,SACD=SOCD,长为6,阴影部分的面积为S阴影=S扇形OCD=,故答案为:45【点睛】本题主要考查了扇形的面积公

11、式,正确理解阴影部分的面积=扇形COD的面积是解题的关键2、2 2 【分析】关于原点对称的两个点的横纵坐标都互为相反数,根据特点列式求出a、b即可求得答案【详解】解:点和点关于原点对称,故答案为:2;2【点睛】本题主要考查了关于原点对称点的坐标特征,解二元一次方程组,熟记关于原点对称点的坐标特征并运用解题是关键3、12【分析】如图,连接BC,AO,作点P关于AB的对称点M,作点P关于AC的对称点N,连接MN交AB于E,交AC于F,此时PEF的周长=PE+PF+EF=EM+EF+FM=MN,想办法求出MN的最小值即可解决问题【详解】解:如图,连接BC,AO,作点P关于AB的对称点M,作点P关于A

12、C的对称点N,连接MN交AB于E,交AC于F,此时PEF的周长=PE+PF+EF=EM+EF+FM=MN,当MN的值最小时,PEF的值最小,AP=AM=AN,BAM=BAP,CAP=CAN,BAC=60,MAN=120,MN=AM=PA,当PA的值最小时,MN的值最小,取AB的中点J,连接CJAB=8,AC=4,AJ=JB=AC=4,JAC=60,JAC是等边三角形,JC=JA=JB,ACB=90,BC=,BOC=60,OB=OC,OBC是等边三角形,OB=OC=BC=4,BCO=60,ACH=30,AHOH,AH=AC=2,CH=AH=2,OH=6,OA=4,当点P在直线OA上时,PA的值最

13、小,最小值为-,MN的最小值为(-)=-12故答案:-12【点睛】本题考查了圆周角定理,垂径定理,轴对称-最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考填空题中的压轴题4、或【分析】如图,连接利用切线的性质结合四边形的内角和定理求解再分两种情况讨论,结合圆周角定理与圆的内接四边形的性质可得答案.【详解】解:如图,连接 (即)分别在优弧与劣弧上, PM,PN分别与O相切于A,B两点, 故答案为:或【点睛】本题考查的是切线的性质定理,圆周角定理的应用,圆的内接四边形的性质,四边形的内角和定理的应用,求解是解本题的关键.5、10 5 【分析】(1)如图,作AHBC于H根据垂线段最短

14、,求出AH即可解决问题(2)如图,在AB上取一点K,使得AKAC,连接CK,DK由PACDAK(SAS),推出PCDK,易知KDBC时,KD的值最小,求出KD的最小值即可解决问题【详解】解:如图作AHBC于H,ABAC20, , , ,根据垂线段最短可知,当AP与AH重合时,PA的值最小,最小值为10AP的最小值是10;(2)如图,在AB上取一点K,使得AKAC,连接CK,DKACB90,B30,CAK60,PADCAK,PACDAK,PADA,CAKA,PACDAK(SAS),PCDK,KDBC时,KD的值最小, , 是等边三角形, ,PC的最小值为5【点睛】本题属于几何变换综合题,考查了等

15、腰三角形的性质,垂线段最短,全等三角形的判定和性质等知识,解题的关键是学会用转化的思想思考问题三、解答题1、(1);(2);(3)或【分析】(1)分别计算出OQ、PO和PQ的长度,比较即可得出答案;(2)先判断点P在以O为圆心,1为半径的圆外且点P在线段OQ垂直平分线的左侧,结合PO2,点P在以O为圆心,2为半径的圆上或圆内,可得点P在如图所示的线段AB上(不包含点B),过作轴,过作轴,垂足分别为 再根据图形的性质求解 从而可得答案;(3)由(2)得:点P在以O为圆心,1为半径的圆外且点P在以O为圆心,2为半径的圆上或圆内,而POPQ,点P在线段OQ垂直平分线的左侧,再分两种情况讨论:当时,当

16、时,分别画出两种情况下的临界直线 再根据临界直线经过的特殊点求解的值,再确定范围即可.【详解】解:(1) O(0,0),Q(1,0), P1(0,-1),P2(,),P3(-1,1) 不满足OQPOPQ且PO2,所以不是线段OQ的“潜力点”,同理: 所以不满足OQPOPQ且PO2,所以不是线段OQ的“潜力点”,同理: 所以满足:OQPOPQ且PO2,所以是线段OQ的“潜力点”,故答案为:P3(2)点P为线段OQ的“潜力点”,OQPOPQ且PO2,OQPO,点P在以O为圆心,1为半径的圆外POPQ,点P在线段OQ垂直平分线的左侧,而的垂直平分线为: PO2,点P在以O为圆心,2为半径的圆上或圆内

17、又点P在直线yx上,点P在如图所示的线段AB上(不包含点B) 过作轴,过作轴,垂足分别为 由题意可知BOC和 AOD是等腰三角形, -xp-(3)由(2)得:点P在以O为圆心,1为半径的圆外且点P在以O为圆心,2为半径的圆上或圆内,而POPQ,点P在线段OQ垂直平分线的左侧当时,过时, 即函数解析式为: 此时 则 当与半径为2的圆相切于时,则 由 而 当时,如图,同理可得:点P在以O为圆心,1为半径的圆外且点P在以O为圆心,2为半径的圆上或圆内,而POPQ,点P在线段OQ垂直平分线的左侧,同理:当过 则 直线为 在直线上,此时 当过时, 则 所以此时: 综上:的范围为:1b或b-1【点睛】本题

18、考查的是新定义情境下的知识运用,圆的基本性质,圆的切线的性质,一次函数的综合应用,锐角三角函数的应用,勾股定理的应用,数形结合是解本题的关键.2、(1)0,;(2);(3)【分析】(1)根据新定义,即可求解;(2)过点O作ODAB于点D,根据三角形的面积,可得,再由d(O,线段AB)=0,可得当O的半径等于OD时最小,当O的半径等于OB时最大,即可求解;(3)过点C作CNAB于点N ,利用锐角三角函数,可得OAB=60,然后分三种情况:当点C在点A的右侧时,当点C与点A重合时,当点C在点A的左侧时,即可求解【详解】解:(1)O的半径为2,A(,0),B(0,),点A在O上,点B在O外,d(A,

19、O),d(B,O);(2)过点O作ODAB于点D,点A(,0),B(0,) , , , ,d(O,线段AB)=0,当O的半径等于OD时最小,当O的半径等于OB时最大,r的取值范围是,(3)如图,过点C作CNAB于点N ,点A(,0),B(0,) , ,OAB=60,C(m,0),当点C在点A的右侧时, , , ,d(C,线段AB)1,C的半径为1, ,解得: ,当点C与点A重合时, ,此时d(C,线段AB)=0,当点C在点A的左侧时, , , ,解得: ,【点睛】本题主要考查了点与圆的位置关系,点与直线的位置关系,理解新定义,熟练掌握点与圆的位置关系,点与直线的位置关系是解题的关键3、(1)见

20、解析;(2)见解析【分析】(1)连接,根据,可证从而可得,即可证明,故;(2)证明,可得,即可证明【详解】证明:(1)连接,如图:为的直径,为的切线,在和中,为的直径,即, ,即,;(2)由(1)知:,又, ,【点睛】本题考查圆中的相似三角形判定与性质,涉及三角形全等的判定与性质,解题的关键是证明,从而得到4、(1)见解析(2)见解析【分析】(1)根据轴对称图形,中心对称图形的性质画出图形即可(2)根据中心对称图形的定义画出图形即可(1)解:图形如图所示(2)解:图形如图所示,点P即为所求作【点睛】本题考查利用旋转变换设计图案,正方形的性质,轴对称图形,中心对称图形等知识,解题的关键是理解题意,灵活运用所学知识解决问题5、(1)(4,1);(2)见解析;(3)见解析【分析】(1)根据关于原点对称的两点的横纵坐标均与原来点的横纵坐标互为相反数,据此可得答案;(2)将三个点分别向右平移3个单位、再向上平移1个单位,继而首尾顺次连接即可;(3)将三个点分别绕原点O逆时针旋转90后得到对应点,再首尾顺次连接即可【详解】(1)点B关于原点对称的点B的坐标为(4,1),故答案为:(4,1);(2)如图所示,A1B1C1即为所求(3)如图所示,A2B2C2即为所求【点睛】本题主要考查作图平移变换、旋转变换,解题的关键是掌握平移变换和旋转变换的定义与性质,并据此得出变换后的对应点

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁