《精品解析2022年人教版九年级数学下册第二十九章-投影与视图章节测评试题(含答案及详细解析).docx》由会员分享,可在线阅读,更多相关《精品解析2022年人教版九年级数学下册第二十九章-投影与视图章节测评试题(含答案及详细解析).docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版九年级数学下册第二十九章-投影与视图章节测评 考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,一个水晶球摆件,它是由一个长方体和一个球体组成的几何体,则其主视图是()ABCD2、下列立体图形中,从上
2、面看到的形状图是三角形的是( )ABCD3、如图所示的几何体,从上面看到的形状图是()ABCD4、如图,是空心圆柱体,其主视图是下列图中的( )ABCD5、如图,这个几何体是将一个正方体中间挖出一个圆柱体后的剩余部分,该几何体的主视图是( )ABCD6、一个由若干个相同的小正方体组成的几何体的主视图和俯视图如图所示,则小正方体的最少个数为( )A6B7C8D97、图1、图2均是正方体,图3是由一些大小相同的正方体搭成的几何体从正面看和左面看得到的形状图,小敏同学经过研究得到如下结论:(1)若将图1中正方体的表面沿某些棱剪开,展成一个平面图形,需要剪开7条棱;(2)用一个平面从不同方向去截图1中
3、的正方体,得到的截面可能是三角形、四边形、五边形或六边形;(3)用一个平面去截图1中的正方体得到图2,截面三角形ABC中ABC45;(4)如图3,要搭成该几何体的正方体的个数最少是a,最多是b,则ab19其中正确结论的个数有( )A1个B2个C3个D4个8、下面的三视图所对应的几何体是()ABC D9、下面左侧几何体的主视图是( )ABCD10、如图是由5个相同的小立方块搭成的几何体,则从左面看这个几何体的形状图是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、由一些大小相同的小正方体搭成的几何体从正面和从左面看到的图形如图所示,则搭成该几何体的小正方体的
4、个数最少是_2、一个圆柱体的三视图如图所示,根据图中数据计算圆柱的体积为_(答案含)3、一个几何体是由一些大小相同的校正方体摆成的,从正面看与从上面看得到的形状如图所示,则组成这个几何体的校正方体最多有_个4、由若干个相同的小正方体搭成的几何体的三视图相同,如图所示至少再加_个小正方体,该几何体可成为一个正方体5、将7个棱长为1的小立方体摆成如图所示几何体,该几何体的俯视图的面积为_三、解答题(5小题,每小题10分,共计50分)1、(1)一个几何体由一些大小相同的小正方体搭成,如图是从上面看这个几何体的形状图,小正方形中的数字表示在该位置的小正方体的个数,请在网格中画出从正面和左面看到的几何体
5、的形状图(2)用小立方块搭一几何体,使它从正面看,从左面看,从上面看得到的图形如图所示请在从上面看到的图形的小正方形中填人相应的数字,使得小正方形中的数字表示在该位置的小立方块的个数其中,图1填人的数字表示最多组成该几何体的小立方块的个数,图2填入的数字表示最少组成该几何体的小立方块的个数2、如图,路灯下一墙墩(用线段AB表示)的影子是BC,小明(用线段DE表示)的影子是EF,在M处有一棵小树,它的影子是MN(1)画出路灯的位置(用点P表示);(2)在图中画出表示小树的线段3、从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图4、如图,一个正方体由27个大小相同的小立方块
6、搭成,现从中取走若干个小立方块,得到一个新的几何体若新几何体与原正方体的表面积相等,问最多可以取走几个小立方块5、如图是由5个同样大小的小正方体搭成的几何体,请在下面方格纸中分别画出这个几何体从正面看、从左面看、从上面看的形状图-参考答案-一、单选题1、D【分析】根据从正面看得到的图形是主视图,可得答案【详解】解:从正面看下边是一个矩形,矩形的上边是一个圆,故选:D【点睛】本题考查了简单组合体的三视图,掌握从正面看得到的图形是主视图是解决此题关键2、C【分析】根据三视图的性质得出主视图的形状进而得出答案【详解】解:正方体从上面看到的形状图是正方形,故A项不符合题意;圆柱从上面看到的形状图是圆,
7、故B项不符合题意;圆锥从上面看到的形状图是带圆心的圆,故D项不符合题意三棱柱从上面看到的形状图是三角形,故C项符合题意;故选:C【点睛】本题题主要考查了简单几何体的三视图,熟悉主视图性质是解题关键3、B【分析】找出从几何体的上面看所得到的视图即可【详解】解:从上面看到的形状图是,故选:B【点睛】此题主要考查了简单几何体的视图,注意培养学生的思考能力和对几何体三种视图的空间想象能力是解题的关键4、C【分析】从正面观察空心圆柱体,能够看见的部分用实线表示,不能看见的部分用虚线表示,即可得到主视图.【详解】主视图是在几何体正面面观察物体得到的图形能够看见的部分用实线表示,不能看见的部分用虚线表示本题
8、圆柱体的主视图整体是个矩形,中间包含两条竖直的虚线故选:C【点睛】本题主要考查三视图, 主视图是在物体正面从前向后观察物体得到的图形;俯视图是在水平面内从上向下观察物体得到的图形;左视图是在几何体左侧面观察物体得到的图形5、A【分析】根据主视图的概念求解即可【详解】解:由题意可得,该几何体的主视图是:故选:A【点睛】此题考查了几何体的主视图,解题的关键是熟练掌握几何体主视图的概念6、B【分析】根据几何体的三视图特点解答即可【详解】解:根据俯视图,最底层有4个小正方体,由主视图知,第二层最少有2个小正方体,第三层最少有1个小正方体,该几何体最少有4+2+1=7个小正方体组成,故选:B【点睛】本题
9、考查几何体的三视图,掌握三视图的特点是解答的关键7、B【分析】根据正方体的棱的条数以及展开后平面之间应有棱连着可判断(1);正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形可判断(2)(3);作出相应的俯视图,标出搭成该几何体的小正方体的个数最多(少)时的数字即可为【详解】解:(1)若将图1中正方体的表面沿某些棱剪开,展成一个平面图形,需要剪开7条棱;正确,因为正方体有6个表面,12条棱,要展成一个平面图形必须5条棱连接,所以至少要剪开1257条棱(2)用一个平面从不同方向去截图1中的正方体,得到的截面可能是三角形、四边形、五边形或六边形;正确,因为用平面去
10、截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形(3)用一个平面去截图1中的正方体得到图2,截面三角形ABC中ABC45;错误,因为ABC是等边三角形,所以ABC608、C【分析】根据“俯视打地基、主视疯狂盖、左视拆违章”得出组成该几何体的小正方体分布情况,继而得出答案【详解】解:根据三视图知,组成该几何体的小正方体分布情况如下:与之相对应的C选项,故选:C【点睛】本题考查由三视图判断几何体,关键是由主视图和左视图、俯视图可判断确定几何体的具体形状9、A【分析】找出从几何体的正面看所得到的图形即可【详解】解:从几何体的正面看,是一行两个并列的矩形故选:A【点睛】本题主要考查了几何体
11、的三视图,准确分析判断是解题的关键10、D【分析】观察图形可知,从左面看到的图形是2列,分别有2,1个正方形,据此即可判断【详解】解:从左面看这个几何体的形状图如图所示:故选D【点睛】此题考查了从不同方向观察物体和几何体和画简单图形的三视图的方法,是基础题型二、填空题1、4【解析】【分析】由主视图可知几何体有两列,两层;由左视图可知几何体有两排,两层,所以第一列最少1个正方体,第二列有最少有3个正方体,由此可解【详解】解:由主视图,左视图画出几何体,如图:故答案为:4【点睛】本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查2、24【解析】【分析】根据主视图确
12、定出圆柱体的底面直径与高,根据圆柱体的体积公式列式计算即可【详解】解:由图知,圆柱体的底面直径为4,高为6,V圆柱=r2h=226=24故答案为24【点睛】本题考查了立体图形的三视图和学生的空间想象能力,圆柱体的体积公式根据主视图确定出圆柱体的底面直径与高是解题的关键3、6【解析】【分析】易得这个几何体共有2层,由主视图和俯视图可得第一层最多正方体的个数为3块,第二层最多正方体的个数为3块,相加即可【详解】解:组成这个几何体的小正方块最多有3+3=6块故答案为:6【点睛】本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查如果掌握口诀“俯视图打地基,主视图疯狂盖,左
13、视图拆违章”就更容易得到答案4、4【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,依此可得有几个小正方体,再用8减去小正方体的个数即可求解【详解】解:根据三视图可得第一层有3个正方体,第二层有1个正方体,共有4个小正方体,844(个)故至少再加4个小正方体,该几何体可成为一个正方体故答案为:4【点睛】本题主要考查三视图,能够根据三视图想象出立体图是解题的关键5、4【解析】【分析】据从上面看得到的图形是俯视图,直接观察,可得答案【详解】解:从上面看,底层是两个小正方形,上层是两个小正方形,如图所示,所以该几何体的俯视图的面积为4故答案为:4【点睛】本题考查了简
14、单组合体的三视图,从上面看得到的图形是俯视图是解题关键三、解答题1、(1)见解析;(2)见解析【分析】(1)根据俯视图中小正方体的个数结合主视图,主视图是从前面向后看得到的图形,从正面看分左中右三列,左边列有2个正方形,中间列有3个正方形,右边列有4个正方形画出图形,根据俯视图中小正方体的个数结合左视图,左视图是从左边向右看得到的图形,从左边看分左中右三列,左边列1个正方形,中间列4个正方形,右边列2个正方形画出图形即可;(2)根据俯视图的图形两行三列,中间列一行,从正面看分左中右三例,左边列3个正方形,中间列1个正方形,右边列2个正方形,从左面看,分两行,前行后行,前行2个正方形,后行3个正
15、方形,左列前行可以是1个正方体或2个正方体,左列后行3个正方体,中间列只有前行1个正方体,右边列前行2个正方体,右边列后行可以1个或2个正方体,最多10个正方体如图1,最少8个正方体如图2在俯视图中标出个数即可【详解】解:(1)从正面看分左中右三列,左边列有2个正方形,中间列有3个正方形,右边列有4个正方形,如图从左边看分左中右三列,左边列1个正方形,中间列4个正方形,右边列2个正方形,如图所示:(2)从正面看分左中右三例,左边列3个正方形,中间列1个正方形,右边列2个正方形,从左面看,分两行,前行后行,前行2个正方形,后行3个正方形,左列前行可以是1个正方体或两个正方体,左列后行3个正方体,
16、中间列只有前行1个正方体,右边列前行2个正方体,后列可以1个或2个正方体,最多10个正方体如图1,最少8个正方体如图2根据题意,填图如下:【点睛】本题考查根据俯视图画主视图与左视图,根据主视图与左视图确定组成图形的正方体的个数,从立体图形到平面图形的转化三视图,由平面图形三视图到立体图形还原几何体空间想象能力,本题难度较大,培养空间想象力,掌握相关知识是解题关键2、(1)见解析;(2)见解析【分析】(1)连接CA并延长与FD的延长线交于点P,点P即路灯的位置;(2)连接PN,作MG垂直于MN与PN交于点G,线段GM即为表示小树的线段【详解】解:(1)如图,连接CA并延长与FD的延长线交于点P,
17、点是路灯的位置(2)如图,连接PN,作MG垂直于MN与PN交于点G,线段表示小树【点睛】此题考查了中心投影,解题的关键是熟练掌握中心投影的性质3、见解析【分析】根据三视图的画法,直接画出主视图、左视图和俯视图即可【详解】解:如图所示:【点睛】本题考查三视图在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉本题画几何体的三视图时应注意小正方形的数目及位置4、最多可以取走16个小立方块【分析】根据表面积不变,只需留11个,分别是正中心的3个和四角上各2个【详解】解:若新几何体与原正方体的表面积相等,最多可以取走16个小正方体,只需留11个,分别是正中心的3个和四角上各2个,如图所示:答:最多可以取走16个小立方块【点睛】本题主要考查了几何体的表面积,熟知几何体表面积的定义以及正方体的表面积公式是解答本题的关键5、见解析【分析】根据图形及三视图的定义作图即可【详解】解:三视图如下所示: 【点睛】此题主要考查了作三视图,根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题关键