精品解析2022年最新人教版九年级数学下册第二十八章-锐角三角函数定向练习试卷(含答案详解).docx

上传人:可****阿 文档编号:30772425 上传时间:2022-08-06 格式:DOCX 页数:29 大小:683.58KB
返回 下载 相关 举报
精品解析2022年最新人教版九年级数学下册第二十八章-锐角三角函数定向练习试卷(含答案详解).docx_第1页
第1页 / 共29页
精品解析2022年最新人教版九年级数学下册第二十八章-锐角三角函数定向练习试卷(含答案详解).docx_第2页
第2页 / 共29页
点击查看更多>>
资源描述

《精品解析2022年最新人教版九年级数学下册第二十八章-锐角三角函数定向练习试卷(含答案详解).docx》由会员分享,可在线阅读,更多相关《精品解析2022年最新人教版九年级数学下册第二十八章-锐角三角函数定向练习试卷(含答案详解).docx(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、人教版九年级数学下册第二十八章-锐角三角函数定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在平面直角坐标系中,直线与轴交于点C,与反比例函数在第一象限内的图象交于点B,连接BO,若,则的值

2、是( )A-20B20C5D52、如图,一辆小车沿斜坡向上行驶米,小车上升的高度米,则斜坡的坡度是()A:B:C:D:3、在中,则的值是( )ABCD4、如图,在矩形ABCD中,对角线AC,BD相交于点O,AB6,DAC60,点F在线段AO上从点A至点O运动,连接DF,以DF为边作等边三角形DFE,点E和点A分别位于DF两侧,下列结论:BDEEFC;EDEC;ADFECF;点E运动的路程是2,其中正确结论的序号为()ABCD5、如图,在ABC中,C=90,BC=5,AC=12,则tanB等于( )ABCD6、三角形在正方形网格纸中的位置如图所示,则tan的值是( )A12B43C35D457、

3、在ABC中, ,则ABC一定是( )A直角三角形B等腰三角形C等边三角形D等腰直角三角形8、等腰三角形的底边长,周长,则底角的正切值为( )ABCD9、已知,在矩形中,于,设,且,则的长为( )ABCD10、球沿坡角的斜坡向上滚动了5米,此时钢球距地面的高度是( )A米B米C米D米第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、助推轮椅可以轻松解决起身困难问题如图1是简易结构图,该轮椅前O1和后轮O2的半径分别为0.6dm和3dm,竖直连接处CO11dm,水平连接处BD与拉伸装置DE共线,BD2dm,座面GF平行于地面且GFDE4.8dm,HF是轮椅靠背,ADE始终保持

4、角度不变初始状态时,拉伸杆AD的端点A在点B正上方且距地面2.2dm,则tanADB的值为 _如图2,踩压拉伸杆AD,装置随之运动,当AD踩至与BD重合时,点E,F,H分别运动到点E,F,H,此时座面GF和靠背FH连成一直线,点H运动到最高点H,且H,F,O2三点正好共线,则HO2的长为 _dm2、若点在反比例函数的图象上,则的值为_3、如图,矩形ABCD中,DEAC于点E,ADE,cos,AB4,AD长为_4、如图,是拦水坝的横断面,堤高为6米,斜面坡度为,则斜坡的长为_米5、如图,在ABC中,I是ABC的内心,O是AB边上一点,O经过点B且与AI相切于点I,若tanBAC,则sinACB的

5、值为 _三、解答题(5小题,每小题10分,共计50分)1、如图1是一台手机支架,图2是其侧面示意图,AB,BC可分别绕点A,B转动,测量知,当AB,BC转动到,时,求点C到AE的距离(结果保留小数点后一位,参考数据:,)2、定义:如果一个三角形一条边上的高与这条边的比值叫做这条边所对角的准对(记作qad)如图1,在ABC中,AHBC于点H,则qadBAC当qadBAC时,则称BAC为这个三角形的“金角”已知在矩形ABCD中,AB3,BC6,ACE的“金角”EAC所对的边CE在BC边上,将ACE绕点C按顺时针方向旋转(090)得到ACE,AC交AD边于点F(1)如图2,当45时,求证:ACF是“

6、金角”(2)如图3,当点E落在AD边上时,求qadAFC的值3、4、计算:5、计算:-参考答案-一、单选题1、D【分析】先根据直线解析式求得点C的坐标,然后根据BOC的面积求得BD的长,然后利用正切函数的定义求得OD的长,从而求得点B的坐标,利用待定系数法将点B坐标代入即可求得结论【详解】解:直线y=k1x+4与x轴交于点A,与y轴交于点C,点C的坐标为(0,4),OC=4,过B作BDy轴于D,SOBC=2,BD=1,tanBOC=,OD=5,点B的坐标为(1,5),反比例函数在第一象限内的图象交于点B,k2=15=5故选:D【点睛】本题考查了反比例函数与一次函数的交点坐标,锐角三角函数,三角

7、形面积,待定系数法求分别列函数解析式,解题的关键是作辅助线构造直角三角形2、A【分析】直接用勾股定理求出水平距离为12,再根据坡度等于竖直距离:水平距离求解即可【详解】解:由勾股定理得,水平距离,斜坡的坡度:,故选A【点睛】本题主要考查了坡度和勾股定理,解题的关键在于能够熟练掌握坡度的定义3、B【分析】根据题意,画出图形,结合余弦函数的定义即可求解【详解】解:由题意,可得图形如下:根据余弦函数的定义可得,故选:B【点睛】此题考查了余弦函数的定义,解题的关键是根据题意画出图形,并掌握余弦函数的定义4、D【分析】根据DAC60,ODOA,得出OAD为等边三角形,再由DFE为等边三角形,得EDFEF

8、DDEF60,即可得出结论正确;如图,连接OE,利用SAS证明DAFDOE,再证明ODEOCE,即可得出结论正确;通过等量代换即可得出结论正确;如图,延长OE至E,使OEOD,连接DE,通过DAFDOE,DOE60,可分析得出点F在线段AO上从点A至点O运动时,点E从点O沿线段OE运动到E,从而得出结论正确;【详解】解:DAC60,ODOA,OAD为等边三角形,DOADAOODA60,ADOD,DFE为等边三角形,EDFEFDDEF60,DFDE,BDE+FDOADF+FDO60,BDEADF,ADF+AFD+DAF180,ADF+AFD180DAF120,EFC+AFD+DFE180,EFC

9、+AFD180DFE120,ADFEFC,BDEEFC,故结论正确;如图,连接OE,由得ADOD,DFDE,ODA60,EDF60,ADFODE,在DAF和DOE中,DAFDOE(SAS),DOEDAF60,COD180AOD120,COECODDOE1206060,COEDOE,在ODE和OCE中,ODEOCE(SAS),EDEC,OCEODE,故结论正确; 由得ODEADF,OCEODE,ADFOCE,即ADFECF,故结论正确;如图,延长OE至E,使OEOD,连接DE,DAFDOE,DOE60,点F在线段AO上从点A至点O运动时,点E从点O沿线段OE运动到E,OEODADABtanABD

10、6tan302,点E运动的路程是2,故结论正确;故选:D【点睛】本题主要考查了矩形性质,等边三角形判定和性质,全等三角形判定和性质,等腰三角形的判定和性质,点的运动轨迹等,解题的关键是熟练掌握全等三角形判定和性质、等边三角形判定和性质等相关知识5、B【分析】根据锐角三角函数求解即可【详解】解:在RtABC中,C90,BC5,AC12,所以tanB,故选:B【点睛】本题考查锐角三角函数,掌握正切的定义:正切是指是直角三角形中,某一锐角的对边与另一相邻直角边的比,是正确解答的关键6、A【分析】根据在直角三角形中,正切值等于对边比上邻边进行求解即可【详解】解:如图所示,在直角三角形ABC中ACB=9

11、0,AC=2,BC=4,tan=ACBC=24=12,故选A【点睛】本题主要考查了求正切值,解题的关键在于能够熟练掌握正切的定义7、D【分析】结合题意,根据乘方和绝对值的性质,得,从而得,根据特殊角度三角函数的性质,得,;根据等腰三角形和三角形内角和性质计算,即可得到答案【详解】解:,ABC一定是等腰直角三角形故选:D【点睛】本题考查了绝对值、三角函数、三角形内角和、等腰三角形的知识;解题的关键是熟练掌握绝对值、三角函数的性质,从而完成求解8、C【分析】由题意得出等腰三角形的腰长为13cm,作底边上的高,根据等腰三角形的性质得出底边一半的长度,最后由三角函数的定义即可得出答案【详解】如图,是等

12、腰三角形,过点A作,BC=10cm,AB=AC,可得:,AD是底边BC上的高,即底角的正切值为故选:C【点睛】本题主要考查等腰三角形的性质、勾股定理和三角函数的定义,熟练掌握等腰三角形的“三线合一”是解题的关键9、B【分析】根据同角的余角相等求出ADE=ACD,再根据两直线平行,内错角相等可得BAC=ACD,然后求出AC,再利用勾股定理求出BC,然后根据矩形的对边相等可得AD=BC【详解】解:DEAC,ADE+CAD=90,ACD+CAD=90,ACD=ADE=,矩形ABCD的对边ABCD,BAC=ACD,cos=,AC=4=,由勾股定理得,BC=,四边形ABCD是矩形,AD=BC=故选:B【

13、点睛】本题考查了矩形的性质,勾股定理,锐角三角函数的定义,同角的余角相等的性质,熟记各性质并求出BC是解题的关键10、A【分析】过铅球C作CB底面AB于B,在RtABC中,AC=5米,根据锐角三角函数sin31=,即可求解【详解】解:过铅球C作CB底面AB于B,如图在RtABC中,AC=5米,则sin31=,BC=sin31AC=5sin31故选择A【点睛】本题考查锐角三角函数,掌握锐角三角函数的定义是解题关键二、填空题1、 ; ;【解析】【分析】根据题意求得到的距离,进而根据正切的定义可得;如图2,过点作交的延长线于点,解直角三角形即可解决问题【详解】解:拉伸杆AD的端点A在点B正上方且距地

14、面2.2dm,BD2dm,O1半径分别为0.6dm,竖直连接处CO11dm,设到的距离为,则dm如图1,连接,过点作,中ADE始终保持角度不变GFDE,四边形是平行四边形装置运动后,如图2,过点作交的延长线于点,则设,则,解得故答案为:,【点睛】本题考查了垂径定理,解直角三角形的应用,两图中有一个角是相等的,找到这个角的并求得它的正切值为是解题的关键2、【解析】【分析】由点P在反比例函数曲线上可知,故P点坐标为(12,5),故OH=12,PH=5,有勾股定理可求得OP=13,则=【详解】点P在反比例函数的图象上故P点坐标为(12,5)故OH=12,PH=5在中满足勾股定理故答案为:【点睛】本题

15、考查了反比例函数及其性质以及求角的余弦值,由反比例函数性质求得P点坐标,进而求得OH,PH的长度是解题的关键3、【解析】【分析】将已知角度的三角函数转换到所需要的三角形中,得到ADE=DCE=,求出AC的值,再由勾股定理计算即可【详解】ADC=AED=90,DAE+ADE=ADE+CDE=90DAE =CDE又DCE+CDE=90ADE=DCE=cos=又矩形ABCD中AB=CD=4AC=在中满足勾股定理有故答案为:【点睛】本题考查了已知余弦长求边长,将已知余弦长转换到所需要的三角形中是解题的关键4、【解析】【分析】由斜面坡度为有,解得AC=12,再由勾股定理求得AB即可【详解】斜面坡度为是直

16、角三角形,故有故答案为:【点睛】本题考察了直角三角形应用题,解直角三角形应用题的一般步骤(1)弄清题中的名词、术语的意义,如仰角、俯角、坡度、坡角等概念,然后根据题意画出几何图形,建立数学模型;(2)将实际问题中的数量关系归结为解直角三角形的问题,当有些图形不是直角三角形时,可适当添加辅助线,把它们分割成直角三角形或矩形;(3)寻找直角三角形,并解这个三角形5、#0.8【解析】【分析】连接OI,BI,作OEAC,可证AOD是等腰三角形,然后证明ODBC,进而ADOACB,解三角形AOD即可【详解】解:如图,连接OI并延长交AC于D,连接BI,AI与O相切,AIOD,AIOAID90,I是ABC

17、的内心,OAIDAI,ABICBI,AIAI,AOIADI(ASA),AOAD,OBOI,OBIOIB,OIBCBI,ODBC,ADOC,作OEAC于E,tanBAC,不妨设OE24k,AE7k,OAAD25k,DEADAE18k,OD30k,sinACB 故答案是:【点睛】本题主要考查了切线的性质,锐角三角函数,等腰三角形的性质和判定,全等三角形的判定和性质等知识,熟练掌握相关知识点是解题的关键三、解答题1、6.3cm【解析】【分析】如图,作CDAE于点D,作BGAE于点G,作CFBG于点F,则四边形CDGF是矩形,即CD=FG,然后分别解直角ABG和直角BCF求出BG和BF的长,最后根据线

18、段的和差即可解答【详解】解:如图,作CDAE于点D,作BGAE于点G,作CFBG于点F,则四边形CDGF是矩形,CD=FG,在直角ABG中,(cm),ABG=30,CBF=20,BCF=70,在直角BCF中,BCF=70,(cm),CD=FG=(cm),即点到的距离为6.3cm【点睛】本题考查了解直角三角形的应用,正确添加辅助线构建直角三角形、灵活运用解直角三角形解决实际问题成为解答本题的关键2、(1)见解析(2)【解析】【分析】(1)过点作于点,解直角三角形求得,进而证明,根据“金角”的定义即可证明当45时,ACF是“金角”(2)过点作于点,证明,可得,设,则,根据勾股定理列出方程,解方程即

19、可求得,进而根据定义即可求得答案【详解】解:(1)四边形ABCD是矩形,ACE的“金角”EAC所对的边CE在BC边上, ,BC6,将ACE绕点C按顺时针方向旋转45得到ACE,即如图,过点作于点, 在中,,又设,则在中,在中,四边形是平行四边形当45时,ACF是“金角”(2)如图,过点作于点由(1)可知,则由旋转的性质可得,在中,则在中在等腰直角三角形中,设,则,在中,即解得(舍)则【点睛】本题考查了“准对”,三角形的“金角”的定义,解直角三角形,相似三角形的性质,矩形的性质,旋转的性质,理解新定义是解题的关键3、【解析】【分析】先去掉绝对值,再计算三角函数值和零指数幂,然后化简算术平方根后可

20、以得解【详解】解:原式=【点睛】本题考查实数的运算,熟练掌握特殊角的三角函数值、零指数幂的计算和算术平方根的化简和计算是解题关键4、0【解析】【分析】根据乘方,二次根式的化简、特殊的三角函数值,零指数幂的意义以及绝对值的性质即可求出答案【详解】解:原式=-2+2=0【点睛】本题考查了实数的运算,乘方,二次根式的化简、特殊的三角函数值,零指数幂的意义以及绝对值的性质,熟练掌握各自的性质是解本题的关键5、【解析】【分析】对式子的中各项分别化简,然后利用实数的加减运算法则,即可得到正确答案【详解】解:=【点睛】本题主要是考查了实数的运算,包括了去绝对值、0次幂、负整数幂、锐角三角函数值、二次根式以及乘方运算,熟练掌握以上每项的运算法则,是求解该题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁