《难点详解沪科版九年级数学下册第25章投影与视图同步训练练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《难点详解沪科版九年级数学下册第25章投影与视图同步训练练习题(无超纲).docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、沪科版九年级数学下册第25章投影与视图同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示,该几何体的俯视图是ABCD2、如图,该几何体的左视图是( )ABCD3、如图所示的几何体的俯视图是(
2、)ABCD4、图1、图2均是正方体,图3是由一些大小相同的正方体搭成的几何体从正面看和左面看得到的形状图,小敏同学经过研究得到如下结论:(1)若将图1中正方体的表面沿某些棱剪开,展成一个平面图形,需要剪开7条棱;(2)用一个平面从不同方向去截图1中的正方体,得到的截面可能是三角形、四边形、五边形或六边形;(3)用一个平面去截图1中的正方体得到图2,截面三角形ABC中ABC45;(4)如图3,要搭成该几何体的正方体的个数最少是a,最多是b,则ab19其中正确结论的个数有( )A1个B2个C3个D4个5、如图,将一块含30角的三角板ABC的直角顶点C放置于直线m上,点A,点B在直线m上的正投影分别
3、为点D,点E,若AB10,BE3,则AB在直线m上的正投影的长是()A5B4C3+4D4+46、如图所示的领奖台是由三个长方体组合而成的几何体,则这个几何体的左视图是()ABCD7、下面图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是( )A四棱柱B四棱锥C圆柱D圆锥8、如图所示的几何体,它的左视图是()ABCD9、下列几何体中,俯视图为三角形的是( )ABCD10、如图所示的几何体的主视图为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在学校开展的手工制作比赛中,小明用纸板制作了一个圆锥模型,它的三视图如图所示,根据图中
4、数据求出这个模型的侧面积为_2、下面是一天中四个不同时刻两个建筑物的影子,将它们按时间先后顺序排列为 _3、用小立方块搭成的几何体;从正面看到的图形和从上面看到的图形如下图,问搭成这样的几何体最多需要_个小立方块,最少需要_个小立方块4、一个立体图形,从正面看到的形状是,从左面看到的形状图是搭这样的立体图形,最少需要_个小正方体,最多可以有_个正方体5、如图是某几何体的三视图,该几何体是_三、解答题(5小题,每小题10分,共计50分)1、如图,是由若干个完全相同的小正方体组成的一个几何体从左面、上面观察如图所示的几何体,分别画出你所看到的平面图形2、如图所示是一个用5个小立方体搭成的几何体,请
5、画出它的三视图3、一个几何体模具由大小相同边长为2分米的小立方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置上的小立方块的个数(1)若工人师傅手里还有一些相同的正方体,如果要保持从上面和从左面看到的形状不变,最多可以添加_个正方体;(2)请画出从正面和从左面看到的这个几何体模具的形状图; (3)为了模具更为美观,工人师傅将对模具的表面进行喷漆,请问工人师傅需要喷漆多少平方分米?4、如图是由7个棱长为1的小正方体搭成的几何体(1)请分别画出这个几何体的主视图、左视图和俯视图;(2)这个几何体的表面积为 (包括底面积);(3)若使得该几何体的俯视图和左视图不变,则最多还
6、可以放 个相同的小正方体5、如图,由10个同样大小的小正方体搭成的几何体(1)请分别画出几何体从正面和从上面看到的形状图:(2)设每个正方体的棱长为1,求出上图原几何体的表面积;(3)如果从这个几何体上取出一个小正方体,在表面标上整数a、b、c、d、e、f,然后将其剪开展开成平面图形如图所示放置,已知正方体相对的面上的数互为相反数,若整数d是最大的负整数,正整数e的平方等于本身,整数f表示五棱柱的总棱数,求下列代数式的值-参考答案-一、单选题1、D【分析】根据俯视图是从物体上面向下面正投影得到的投影图,即可求解【详解】解:根据题意得:D选项是该几何体的俯视图故选:D【点睛】本题主要考查了几何体
7、的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)主视图:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)左视图:从物体左面向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)俯视图:从物体上面向下面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键2、C【分析】根据从左边看得到的图形是左视图解答即可【详解】解:从左边看是一个正方形被水平的分成3部分,中间的两条分线是虚线,故C正确故选C【点睛】本题主要考查了简单组合体的三视图,掌握三视图的定义成为解答本题的关键3、B【分析】找到从上面看所得到的图形即可,注意
8、所有的看到的棱都应表现在俯视图中【详解】解:这个几何体的俯视图是 ,故选:B【点睛】本题考查了俯视图,熟记俯视图的定义(从物体的上面观察得到的视图)是解题关键4、B【分析】根据正方体的棱的条数以及展开后平面之间应有棱连着可判断(1);正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形可判断(2)(3);作出相应的俯视图,标出搭成该几何体的小正方体的个数最多(少)时的数字即可为【详解】解:(1)若将图1中正方体的表面沿某些棱剪开,展成一个平面图形,需要剪开7条棱;正确,因为正方体有6个表面,12条棱,要展成一个平面图形必须5条棱连接,所以至少要剪开1257条棱(
9、2)用一个平面从不同方向去截图1中的正方体,得到的截面可能是三角形、四边形、五边形或六边形;正确,因为用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形(3)用一个平面去截图1中的正方体得到图2,截面三角形ABC中ABC45;错误,因为ABC是等边三角形,所以ABC60(4)如图3,要搭成该几何体的正方体的个数最少是a,最多是b,则a+b19错误,应该是a6,b11,a+b17故选:B【点睛】此题主要考查了正方体的展开图的性质,截正方体以及简单组合体的三视图等知识,根据展开图的性质得出一个平面图形必须5条棱连接是解题关键5、C【分析】根据30角所对的直角边等于斜边的一半,可得
10、AC=5,根据锐角三角函数可得BC的长,再根据勾股定理可得CE的长;通过证明ACDCBE,再根据相似三角形的性质可得CD的长,进而得出DE的长【详解】解:在RtABC中,ABC=30,AB=10,AC=AB=5,BC=ABcos30=10,在RtCBE中,CE=,CAD+ACD=90,BCE+ACD=90,CAD=BCE,RtACDRtCBE,CD=,DE=CD+BE=,即AB在直线m上的正投影的长是,故选:C【点睛】本题考查了平行投影,掌握相似三角形的判断与性质以及勾股定理是解答本题的关键6、C【分析】左视图是从左边看得到的视图,结合选项即可得出答案【详解】解:A是俯视图,B、D不是该几何体
11、的三视图,C是左视图故选:C【点睛】本题考查了简单组合体的三视图,属于基础题,从正面看到的图是主视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线7、C【分析】根据三视图即可完成【详解】此几何体为一个圆柱故选:C【点睛】本题考查由三视图还原几何体,既要考虑各视图的形状,还要把各视图的情况综合考虑才能得到几何体的形状8、C【分析】根据几何体的左面是一个圆环即可得左视图【详解】由于几何体的左面是一个圆环,故其左视图也是一个圆环,且小圆是实线故选:C【点睛】本题考查了三视图,根据所给几何体正确画出三视图是关键9、D【分析】从正面、上面和左面三个不同的方向看一
12、个物体,并描绘出所看到的三个图形,即几何体的三视图【详解】从上方朝下看只有D选项为三角形故选:D【点睛】本题考查了简单几何体的三视图,三视图是从正面、左面、上面以平行视线观察物体所得的图形从视图反过来考虑几何体时,它有多种可能性例如,正方体的主视图是一个正方形,但主视图是正方形的几何体有很多,如三棱柱、长方体、圆柱等因此在学习时应结合实物,亲自变换角度去观察,才能提高空间想象能力10、A【分析】根据主视图是从物体的正面看得到的视图即可求解【详解】解:主视图如下故选:A【点睛】本题考查简单组合体的三视图,掌握三视图的画法是正确判断的前提二、填空题1、【分析】从主视图和左视图都为一个三角形,俯视图
13、为一个圆,可以确定这个几何体是圆锥,由三视图可知圆锥的底面半径为,高为4,进而求得母线长,据此求得圆锥的侧面积【详解】从主视图和左视图都为一个三角形,俯视图为一个圆,可以确定这个几何体是圆锥,由三视图可知圆锥的底面半径为,高为,则母线长为,所以这个模型的侧面积为故答案为【点睛】本题考查了根据三视图确定几何体,求圆锥的侧面,牢记公式是解题的关键2、【分析】根据从早晨到傍晚物体影子的指向是:西西北北东北东,影长由长变短,再变长【详解】解:西为,西北为,东北为,东为,将它们按时间先后顺序排列为,故答案是:【点睛】本题考查平行投影的特点和规律,解题的关键是掌握在不同时刻,物体在太阳光下的影子的大小在变
14、,方向也在改变,就北半球而言,从早晨到傍晚物体影子的指向是:西西北北东北东,影长由长变短,再变长3、8 7 【分析】根据正面看与上面看的图形,得到俯视图中最左的一列都为3层,第2列都为2层,第3列为1层,进而即可求解【详解】解:根据正面看与上面看的图形,得到俯视图中最左的一列都为3层,第2列都为2层,第3列为1层,得到最多共32218个小正方体,最少需要32117个小正方体;故答案是:8;7【点睛】本题考查几何体的三视图由几何体的俯视图和主视图,准确想象出组合体的形状是解题的关键4、6 10 【分析】根据题中所给的正面的形状和左面的形状即可得【详解】解:根据题中所给的正面的形状和左面的形状可知
15、,最少需要6个,将小正方体横着摆5个,再在任意一个小正方体的后面放一个小正方体;最多需要10个,将小正方体横着摆5个,再在每一个小正方体的后面放一个小正方体;故答案为:6,10【点睛】本题考查了三视图,解题的关键是根据三视图得出立体图形5、圆柱【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状【详解】根据主视图和左视图为矩形判断出是柱体,根据俯视图是圆形可判断出这个几何体应该是圆柱故答案为:圆柱【点睛】本题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形三、解答题1、见解析【分
16、析】根据几何体的三视图画法作图【详解】解:如图,【点睛】此题考查了画小正方体组成的几何体的三视图,正确掌握几何体的三视图的画图方法是解题的关键2、见解析【分析】主视图从左往右2列正方形的个数依次为3,1;左视图从左往右2列正方形的个数依次为3,1;俯视图从左往右3列正方形的个数依次为2,1,依此画出图形即可.【详解】解:如图所示.【点睛】考查画几何体的三视图;用到的知识点为:主视、左视图、俯视图分别是从物体的正面、左面、上面看得到的图形3、(1)5;(2)见解析;(3)工人师傅需要喷漆232平方分米【分析】(1)根据从上面和从左面看到的形状保持不变,可对每个位置增加正方体即可;(2)根据每行和
17、每列正方体的个数即可画出从正面和从左面看到的这个几何体模具的形状图;(3)求出模具的表面积即可【详解】(1)由题可知,可在第二行第一列增加1个正方体,第二行第二列增加3个正方体,第三行第二列增加1个正方体,所以最多可以添加5个正方体(2)画出从正面和从左面看到的形状图如下:(3)工人师傅需要喷漆面积如下:(平方分米)答:工人师傅需要喷漆232平方分米【点睛】本题考查三视图的画法以及表面积的求法,掌握从不同方向看物体的形状是解题的关键4、(1)见解析;(2)30;(3)3【分析】(1)根据三视图的画法画出相应的图形即可;(2)三视图面积的2倍加被挡住的面积即可;(3)根据俯视图和左视图的特点即可
18、求解【详解】(1)这个几何体的主视图、左视图和俯视图如下:(2)(644)2230,故答案为:30;(3)保持这个几何体的俯视图和左视图不变,可往第一列和第二列分别添加1个、2个小正方体,故答案为:3【点睛】此题主要考查了三视图,正确掌握不同视图的观察角度是解题关键5、(1)见解析;(2)38;(3)-1【分析】(1)由已知条件可知,从正面看有3列,每列小正方数形数目分别为3,1,2;从左面看有3列,每列小正方形数目分别为3,2,1;据此可画出图形;(2)分别得到各个方向看的正方形面数,相加后乘1个面的面积即可求解;(3)根据已知条件得出d,e,f的值,再根据正方体相对面的特点得到a,b,c的值,从而代入化简【详解】解:(1)如图所示:(2)(11)(62+62+62+2)=138=38故该几何体的表面积是38(3)整数d是最大的负整数,正整数e的平方等于本身,整数f表示五棱柱的总棱数,d=-1,e=1,f=15,由图可知:“a”与“d”相对,“b”与“f”相对,“c”与“e”相对,a=1,b=-15,c=-1,【点睛】本题考查了几何体的三视图画法,正方体展开图,由立体图形可知主视图、左视图、俯视图,并能得出有几列即每一列上的数字