模拟测评2022年邯郸永年区中考数学三年真题模拟-卷(Ⅱ)(含答案及详解).docx

上传人:可****阿 文档编号:30768728 上传时间:2022-08-06 格式:DOCX 页数:21 大小:582.89KB
返回 下载 相关 举报
模拟测评2022年邯郸永年区中考数学三年真题模拟-卷(Ⅱ)(含答案及详解).docx_第1页
第1页 / 共21页
模拟测评2022年邯郸永年区中考数学三年真题模拟-卷(Ⅱ)(含答案及详解).docx_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《模拟测评2022年邯郸永年区中考数学三年真题模拟-卷(Ⅱ)(含答案及详解).docx》由会员分享,可在线阅读,更多相关《模拟测评2022年邯郸永年区中考数学三年真题模拟-卷(Ⅱ)(含答案及详解).docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 线 封 密 内 号学级年名姓 线 封 密 外 2022年邯郸永年区中考数学三年真题模拟 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、方程的解为( )ABCD无解2、不等式1的负整数解有()A1

2、个B2个C3个D4个3、下列各题去括号正确的是()A(ab)(cd)abcdBa2(bc)a2bcC(ab)(cd)abcdDa2(bc)a2b2c4、实数a、b、c在数轴上的对应点的位置如图所示,下列式子中正确的有( )b+c0;a+ba+c;bcac;abacA1个B2个C3个D4个5、下列各式的约分运算中,正确的是( )ABCD6、某件商品先按成本价加价50%后标价,再以九折出售,售价为135元,若设这件商品的成本价是x元,根据题意,可得到的方程是( )ABCD7、下列分式中,最简分式是( )ABCD8、在, ,中,负数的个数有( )A个B个C个D个9、下列等式成立的是( )ABCD10

3、、直线上两点的坐标分别是,则这条直线所对应的一次函数的解析式为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、的最简公分母是_ 线 封 密 内 号学级年名姓 线 封 密 外 2、如图,圆心角AOB20,将 旋转n得到,则的度数是_度3、已知与互为相反数,则的值是_4、(1)定义“*”是一种运算符号,规定,则=_(2)宾馆重新装修后,准备在大厅的主楼梯上铺设一种红地毯,已知这种地毯每平方米售价40元,主楼梯道宽2米,其侧面如图所示,则买地毯至少需要_ 元5、下列4个分式:; ;,中最简分式有_个三、解答题(5小题,每小题10分,共计50分)1、列方程解应用题

4、:在足球比赛中,某队在已赛的11场比赛中保持连续不败,积25分已知胜一场得3分,平一场得1分,负一场得0分,求该队获胜场数2、已知抛物线yx2+x(1)直接写出该抛物线的对称轴,以及抛物线与y轴的交点坐标;(2)已知该抛物线经过A(3n+4,y1),B(2n1,y2)两点若n5,判断y1与y2的大小关系并说明理由;若A,B两点在抛物线的对称轴两侧,且y1y2,直接写出n的取值范围3、鱼卷是泉州十大名小吃之一,不但本地人喜欢,还深受外来游客的赞赏小张从事鱼卷生产和批发多年,有着不少来自零售商和酒店的客户,当地的习俗是农历正月没有生产鱼卷,客户正月所需要的鱼卷都会在农历十二月底进行一次性采购201

5、8年年底小张的“熟客”们共向小张采购了5000箱鱼卷,到2020年底“熟客”们采购了7200箱(1)求小张的“熟客们这两年向小张采购鱼卷的年平均增长率;(2)2020年底小张“熟客”们采订购鱼卷的数量占小张年底总销售量的,由于鱼卷受到游客们的青睐,小张做了一份市场调查,决定今年年底是否在网上出售鱼卷,若没有在网上出售鱼卷,则按去年的价格出售,每箱利润为15元,预计销售量与去年持平;若计划在网上出售鱼卷,则需把每箱售价下4至5元,且每下调1元销售量可增加1000箱,求小张在今年年底能获得的最大利润是多少元?4、在数轴上,点A,B分别表示数a,b,且,记(1)求AB的值;(2)如图,点P,Q分别从

6、点A,B;两点同时出发,都沿数轴向右运动,点P的速度是每秒4个单位长度,点Q的速度是每秒1个单位长度,点C从原点出发沿数轴向右运动,速度是每秒3个单位长度,运动时间为t秒请用含t的式子分别写出点P、点Q、点C所表示的数;当t的值是多少时,点C到点P,Q的距离相等?5、如图,在数轴上记原点为点O,已知点A表示数a,点B表示数b,且a,b满足,我们把数轴上两点之间的距离,用表示两点的大写字母表示,如:点A与点B之间的距离记作AB(1)_,_;(2)若动点P,Q分别从A,B同时出发向右运动,点P的速度为每秒2个单位长度,点Q的速度为每秒1个单位长度,当点P和点Q重合时,P,Q两点停止运动当点P到达原

7、点O时,动点R从原点O出发,以每秒3个单位长度的速度也向右运动,当点R追上点Q后立即返回,以同样的速度向点 线 封 密 内 号学级年名姓 线 封 密 外 P运动,遇到点P后再立即返,以同样的速度向点Q运动,如此往返,直到点P、Q停止运动时,点R也停止运动,求在此过程中点R行驶的总路程,以及点R停留的最后位置在数轴上所对应的有理数;(3)动点M从A出发,以每秒1个单位的速度沿数轴在A,B之间运动,同时动点N从B出发,以每秒2个单位的速度沿数轴在A,B之间往返运动,当点M运动到B时,M和N两点停止运动设运动时间为t秒,是否存在t值,使得?若存在,请直接写出t值;若不存在,请说明理由-参考答案-一、

8、单选题1、D【分析】先去分母,把分式方程转化为整式方程,然后求解即可【详解】解:去分母得,解得,经检验,是原分式方程的增根,所以原分式方程无解故选D【点睛】本题主要考查分式方程的求解,熟练掌握分式方程的求解是解题的关键2、A【分析】先求出不等式组的解集,再求不等式组的整数解【详解】去分母得:x7+23x2,移项得:2x3,解得:x故负整数解是1,共1个故选A【点睛】本题考查了不等式的解法,并会根据未知数的范围确定它所满足的特殊条件的值一般方法是先解不等式,再根据解集求其特殊值3、C【分析】根据去括号法则解答即可.【详解】、,此选项错误;、,此选项错误;、,此选项正确;、,此选项错误.故选:.【

9、点睛】本题考查了去括号,属于基础题,关键是注意去括号时注意符号的改变.4、B【详解】试题解析:由数轴可得c0ba,且a|c|b, 线 封 密 内 号学级年名姓 线 封 密 外 b+c0,应为b+c0,故不正确; a+ba+c,正确; bcac,应为bcac,故不正确; abac,正确 共2个正确 故选B考点:实数与数轴5、D【分析】要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去【详解】解:A、,故A错误;B、,故B错误;C、,故C错误;D、,故D正确;故选D【点睛】本题主要考查了分式的约分,解题时注意:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式

10、的约分6、A【分析】设这件商品的成本价为x元,售价=标价90%,据此列方程【详解】解:标价为,九折出售的价格为,可列方程为故选:A【点睛】本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程7、C【详解】【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分【详解】A、分式的分子与分母中的系数34和85有公因式17,可以约分,故A错误;B、=yx,故B错误;C、分子分母没有公因式,是最简分式,故C正确;D、=,故D错误,故

11、选C【点睛】本题考查了最简分式,熟练掌握最简分式的概念是解题的关键.分式的化简过程,首先要把分子分母分解因式,然后进行约分 线 封 密 内 号学级年名姓 线 封 密 外 8、A【分析】根据负数的定义:小于0的数是负数作答【详解】解:五个数, ,化简为, ,+2所以有2个负数故选:A【点睛】本题考查负数的概念,判断一个数是正数还是负数,要把它化为最简形式再判断概念:大于0的数是正数,小于0的是负数9、D【分析】根据分式的基本性质进行判断.【详解】解:A、分子、分母同时除以-1,则原式=,故本选项错误; B、分子、分母同时乘以-1,则原式=,故本选项错误; C、分子、分母同时除以a,则原式= ,故

12、本选项错误; D、分子、分母同时乘以b,则原式=,故本选项正确.故选D.【点睛】本题考查了分式的基本性质.特别要注意:分式的分子、分母及本身的符号,任意改变其中的两个,分式的值不变.10、A【分析】利用待定系数法求函数解析式【详解】解:直线y=kx+b经过点P(-20,5),Q(10,20), ,解得,所以,直线解析式为故选A【点睛】本题主要考查待定系数法求函数解析式,是中考的热点之一,需要熟练掌握解题的关键是掌握待定系数法二、填空题1、【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式; 线 封 密 内 号学级年名姓 线

13、 封 密 外 (3)同底数幂取次数最高的,得到的因式的积就是最简公分母【详解】解:的分母分别是xy、4x3、6xyz,故最简公分母是故答案为【点睛】本题考查了最简公分母的定义及求法通常取各分母系数的最小公倍数与字母因式的最高次幂的积作为公分母,这样的公分母叫做最简公分母一般方法:如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂2、20【分析】先根据旋转的性质得,则根据圆心角、弧、弦的关系得到DOC=AOB

14、=20,然后根据圆心角的度数等于它所对弧的度数即可得解.【详解】解: 将旋转n得到,DOC=AOB=20,的度数为20度故答案为20【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等也考查了旋转的性质3、【分析】首先根据与互为相反数,可得+=0,进而得出,然后用含的代数式表示,再代入求值即可【详解】解:与互为相反数,+=0, 故答案为:【点睛】本题主要考查了实数的运算以及相反数,根据相反数的概念求得与之间的关系是解题关键4、2019; 800 【分析】(1)利用已知的新定义计算即可得到结果;(2)根据题意,

15、结合图形,先把楼梯的横竖向上向左平移,构成一个矩形,再求得其面积,则购买 线 封 密 内 号学级年名姓 线 封 密 外 地毯的钱数可求【详解】解:(1) =2-(-2)+2015=2019;(2)如图,利用平移线段,把楼梯的横竖向上向左平移,构成一个矩形,长宽分别为6米,4米,地毯的长度为6+4=10米,地毯的面积为102=20平方米,买地毯至少需要2040=800元故答案为:(1)2019;(2)800【点睛】(1)本题考查有理数的混合运算,熟练掌握运算法则是解本题的关键(2)本题考查平移的性质,解题的关键是要利用平移的知识,把要求的所有线段平移到一条直线上进行计算5、【分析】根据最简分式的

16、定义逐式分析即可.【详解】是最简分式;=,不是最简分式 ;=,不是最简分式;是最简分式.故答案为2.【点睛】本题考查了最简分式的识别,与最简分数的意义类似,当一个分式的分子与分母,除去1以外没有其它的公因式时,这样的分式叫做最简分式.三、解答题1、该队获胜7场【分析】设该队获胜x场,平场的场数为 ,根据题意列方程得,计算求解即可【详解】解:设该队获胜x场,平场的场数为 根据题意得: 解得 答:该队获胜7场【点睛】本题考查了一元一次方程的应用解题的关键在于正确的列方程2、(1)直线x1,(0,0)(2)y1y2,理由见解析;1n【分析】(1)由对称轴公式即可求得抛物线的对称轴,令x0,求得函数值

17、,即可求得抛物线与y轴的交点坐标;(2)由n5,可得点A,点B在对称轴直线x1的左侧,由二次函数的性质可求解; 线 封 密 内 号学级年名姓 线 封 密 外 (3)分两种情况讨论,列出不等式组可求解(1)yx2+x,对称轴为直线x1,令x0,则y0,抛物线与y轴的交点坐标为(0,0);(2)xAxB(3n+4)(2n1)n+5,xA1(3n+4)13n+33(n+1),xB1(2n1)12n22(n1)当n5时,xA10,xB10,xAxB0A,B两点都在抛物线的对称轴x1的左侧,且xAxB,抛物线yx2+x开口向下,在抛物线的对称轴x1的左侧,y随x的增大而增大y1y2;若点A在对称轴直线x

18、1的左侧,点B在对称轴直线x1的右侧时,由题意可得,不等式组无解,若点B在对称轴直线x1的左侧,点A在对称轴直线x1的右侧时,由题意可得:,1n,综上所述:1n【点睛】本题考查了抛物线与y轴的交点,二次函数的性质,一元一次不等式组的应用,利用分类讨论思想解决问题是本题的关键3、(1)(2)小张在今年年底能获得的最大利润是元.【分析】(1)设小张的“熟客”们这两年向小张采购鱼卷的年平均增长率为则可得方程再解方程即可得到答案;(2)先求解今年的总的销量为箱,设今年总利润为元,价格下调元,则可建立二次函数为,再利用二次函数的性质求解最大值即可.(1)解:设小张的“熟客”们这两年向小张采购鱼卷的年平均

19、增长率为 则 整理得: 解得:(负根不合题意舍去) 线 封 密 内 号学级年名姓 线 封 密 外 答:小张的“熟客”们这两年向小张采购鱼卷的年平均增长率为(2)解: 2020年底小张“熟客”们采订购鱼卷的数量占小张年底总销售量的, 2020年小张年总销量为:(箱),设今年总利润为元,价格下调元,则 令 则 所以抛物线的对称轴为: 所以函数有最大值, 当时,(元),所以小张在今年年底能获得的最大利润是元.【点睛】本题考查的是一元二次方程的应用,二次函数的应用,掌握“确定相等关系建立一元二次方程,建立二次函数模型”是解本题的关键.4、(1)(2)点所表示的数为,点所表示的数为,点所表示的数为;或【

20、分析】(1)先根据绝对值的非负性求出的值,再代入计算即可得;(2)根据“路程=速度时间”、结合数轴的性质即可得;根据建立方程,解方程即可得(1)解:,解得,;(2)解:由题意,点所表示的数为,点所表示的数为,点所表示的数为;,由得:,即或,解得或,故当或时,点到点的距离相等【点睛】本题考查了数轴、绝对值、一元一次方程的应用等知识点,熟练掌握数轴的性质是解题关键5、(1) 线 封 密 内 号学级年名姓 线 封 密 外 (2)点R行驶的总路程为;R停留的最后位置在数轴上所对应的有理数为(3)或或或【分析】(1)根据非负数的意义分析即可;(2)根据题意,三点重合,则只需计算点的位置以及运动时间即可;

21、(3)根据题意分情况讨论,根据情况建立一元一次方程解决问题(1)故答案为:(2)当点P到达原点O时,动点R从原点O出发,则到达点需要:秒则此时点的位置为设秒后停止运动,则解得此时点的位置在,即点也在点位置,其对应的有理数为:点的运动时间为,速度为个单位长度每秒,则总路程为(3)存在,的值为: 理由如下:,11秒后点停止运动当分别位于的两侧时,如图,此时,表示的有理数为,表示的有理数为解得当重合时,即第一次相遇时,如图,则解得当点从点返回时,则点表示的有理数为若此时点未经过点,则则 线 封 密 内 号学级年名姓 线 封 密 外 解得,则此种情况不存在则此时点已经过点,如图,则解得当在点右侧重合时,如图,则解得此时点都已经到达点,此时即三点重合,停止运动故t的值为:【点睛】本题考查了绝对值的非负性,用数轴上的点表示有理数,两点之间的距离,动点问题,一元一次方程的应用,数形结合是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁