《考点解析:北师大版七年级数学下册第四章三角形同步测试试题(精选).docx》由会员分享,可在线阅读,更多相关《考点解析:北师大版七年级数学下册第四章三角形同步测试试题(精选).docx(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版七年级数学下册第四章三角形同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、将一副三角板按如图所示的方式放置,使两个直角重合,则AFD的度数是()A10B15C20D252、下列条件中,能判
2、定ABCDEF的是( )AAD,BE,ACDFBAE,ABEF,BDCAD,BE,CFDABDE,BCEF,AE3、在下列长度的四根木棒中,能与3cm,9cm的两根木棒首尾顺次相接钉成一个三角形的是( )A3cmB6cmC10cmD12cm4、如图,为了估计一池塘岸边两点A,B之间的距离,小颖同学在池塘一侧选取了一点P,测得,那么点A与点B之间的距离不可能是( )ABCD5、如图是55的正方形网格中,以D,E为顶点作位置不同的格点的三角形与ABC全等,这样格点三角形最多可以画出()A2个B3个C4个D5个6、如图,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,OA=15米,OB1
3、0米,A、B间的距离不可能是()A5米B10米C15米D20米7、满足下列条件的两个三角形不一定全等的是( )A周长相等的两个三角形B有一腰和底边对应相等的两个等腰三角形C三边都对应相等的两个三角形D两条直角边对应相等的两个直角三角形8、如图,在和中,连接,交于点,连接下列结论:;平分;平分其中正确的个数为( )A1个B2个C3个D4个9、如图,直线EF经过AC的中点O,交AB于点E,交CD于点F,下列不能使AOECOF的条件为()AACBABCDCAECFDOEOF10、以长为15cm,12cm,8cm、5cm的四条线段中的三条线段为边,可以画出三角形的个数是( )A1个B2个C3个D4个第
4、卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,AOB90,OAOB,直线l经过点O,分别过A、B两点作ACl于点C,BDl于点D,若AC5,BD3,则CD_2、如图,ABCDEF,BEa,BFb,则CF_3、如图,方格纸中是9个完全相同的正方形,则1+2的值为 _4、一个等腰三角形的一边长为2,另一边长为9,则它的周长是_5、如图,ABD80,C38,则D_度三、解答题(5小题,每小题10分,共计50分)1、如图,在中,点D是内一点,连接CD,过点C作且,连接AD,BE求证:2、在复习课上,老师布置了一道思考题:如图所示,点M,N分别在等边的边上,且,交于点Q求证
5、:同学们利用有关知识完成了解答后,老师又提出了下列问题:(1)若将题中“”与“”的位置交换,得到的是否仍是真命题?请你给出答案并说明理由(2)若将题中的点M,N分别移动到的延长线上,是否仍能得到?请你画出图形,给出答案并说明理由3、如图,RtACB中,ACB90,ACBC,E点为射线CB上一动点,连结AE,作AFAE且AFAE(1)如图1,过F点作FDAC交AC于D点,求证:FDBC;(2)如图2,连结BF交AC于G点,若AG3,CG1,求证:E点为BC中点(3)当E点在射线CB上,连结BF与直线AC交子G点,若BC4,BE3,则 (直接写出结果)4、探究与发现:如图,在ABC中,BC45,点
6、D在BC边上,点E在AC边上,且ADEAED,连接DE(1)当BAD60时,求CDE的度数;(2)当点D在BC(点B、C除外)边上运动时,试猜想BAD与CDE的数量关系,并说明理由(3)深入探究:如图,若BC,但C45,其他条件不变,试探究BAD与CDE的数量关系5、如图,BM、CN都是ABC的高,且BPAC,CQAB,请探究AP与AQ的数量关系,并说明理由-参考答案-一、单选题1、B【分析】根据三角板各角度数和三角形的外角性质可求得BFE,再根据对顶角相等求解即可【详解】解:由题意,ABC=60,E=45,ABC=E+BFE,BFE=ABCE=6045=15,AFD=BFE=15,故选:B【
7、点睛】本题考查三角板各角的度数、三角形的外角性质、对顶角相等,熟知三角板各角的度数,掌握三角形的外角性质是解答的关键2、A【分析】根据全等三角形的判定方法,对各选项分别判断即可得解【详解】解:A、AD,BE,ACDF,根据AAS可以判定,故此选项符合题意;B、AE,ABEF,BD,AB与EF不是对应边,不能判定,故此选项不符合题意;C、AD,BE,CF,没有边对应相等,不可以判定,故此选项不符合题意;D、ABDE,BCEF,AE,有两边对应相等,一对角不是对应角,不可以判定,故此选项不符合题意;故选A【点睛】本题考查了全等三角形的判定方法,一般方法有:SSS、SAS、ASA、AAS、HL注意:
8、AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角3、C【分析】设第三根木棒的长度为cm,再确定三角形第三边的范围,再逐一分析各选项即可得到答案.【详解】解:设第三根木棒的长度为cm,则 所以A,B,D不符合题意,C符合题意,故选C【点睛】本题考查的是三角形的三边的关系,掌握“利用三角形的三边关系确定第三边的范围”是解本题的关键.4、D【分析】首先根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,求出AB的取值范围,然后再判断各选项是否正确【详解】解:PA100m,PB90m,根据三角形的三边关系得到:,点A与点B
9、之间的距离不可能是20m,故选A【点睛】本题主要考查了三角形的三边关系,掌握三角形两边只差小于第三边、两边之和大于第三边是解题的关键5、C【分析】观察图形可知:DE与AC是对应边,B点的对应点在DE上方两个,在DE下方两个共有4个满足要求的点,也就有四个全等三角形【详解】根据题意,运用“SSS”可得与ABC全等的三角形有4个,线段DE的上方有两个点,下方也有两个点,如图故选C【点睛】本题考查三角形全等的判定方法,解答本题的关键是按照顺序分析,要做到不重不漏6、A【分析】根据三角形的三边关系得出5AB25,根据AB的范围判断即可【详解】解:连接AB,根据三角形的三边关系定理得:1510AB15+
10、10,即:5AB25,A、B间的距离在5和25之间,A、B间的距离不可能是5米;故选:A【点睛】本题主要考查对三角形的三边关系定理的理解和掌握,能正确运用三角形的三边关系定理是解此题的关键7、A【分析】根据全等三角形的判定方法求解即可判定三角形全等的方法有:SSS,SAS对各选项进行一一判断即可【详解】解:A、周长相等的两个三角形不一定全等,符合题意; B、有一腰和底边对应相等的两个等腰三角形根据三边对应相等判定定理可判定全等,不符合题意;C、三边都对应相等的两个三角形根据三边对应相等判定定理可判定全等,不符合题意;D、两条直角边对应相等的两个直角三角形根据SAS判定定理可判定全等,不符合题意
11、故选:A【点睛】此题考查了全等三角形的判定方法,解题的关键是熟练掌握全等三角形的判定方法判定三角形全等的方法有:SSS,SAS,AAS,ASA,HL(直角三角形)8、C【分析】由全等三角形的判定及性质对每个结论推理论证即可【详解】又,故正确由三角形外角的性质有则故正确作于,于,如图所示:则,在和中,在和中,平分故正确假设平分则即由知又为对顶角在和中,即AB=AC又故假设不符,故不平分故错误综上所述正确,共有3个正确故选:C【点睛】本题考查了全等三角形的判定及性质,灵活的选择全等三角形的判定的方法是解题的关键,从判定两个三角形全等的方法可知,要判定两个三角形全等,需要知道这两个三角形分别有三个元
12、素(其中至少一个元素是边)对应相等,这样就可以利用题目中的已知边角迅速、准确地确定要补充的边角,有目的地完善三角形全等的条件,从而得到判定两个三角形全等的思路9、C【分析】根据全等三角形的判定逐项判断即可【详解】解:直线EF经过AC的中点O,OA=OC,A、OA=OC,AC,AOECOF,AOECOF(ASA),此选项不符合题意;B、ABCD,AC,又OA=OC,AOECOF,AOECOF(ASA),此选项不符合题意;C、由OA=OC,AECF,AOECOF,不能证明AOECOF,符合题意;D、OA=OC,AOECOF,OEOF,AOECOF(SAS),此选项不符合题意,故选:C【点睛】本题考
13、查全等三角形的判定、对顶角相等,熟练掌握全等三角形的判定条件是解答的关键10、C【分析】从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可【详解】解:首先可以组合为15cm,12cm,8cm;15cm,12cm,5cm;15cm, 8cm、5cm; 12cm,8cm、5cm再根据三角形的三边关系,发现其中的12cm,8cm、5cm不符合,则可以画出的三角形有3个故选:C【点睛】本题考查了三角形的三边关系:即任意两边之和大于第三边,任意两边之差小于第三边这里一定要首先把所有的情况组合后,再看是否符合三角形的三边关系二、填空题1、2【分析】首先根据同角的余角相等得
14、到ABOD,然后利用AAS证明ACOODB,根据全等三角形对应边相等得出ACOD5,OCBD3,根据线段之间的数量关系即可求出CD的长度【详解】解:ACl于点C,BDl于点D,ACOODB90,AOB90,A90AOCBOD,在ACO和ODB中,ACOODB(AAS),ACOD5,OCBD3,CDODOC532,故答案为:2【点睛】此题考查了全等三角形的性质和判定,同角的余角相等,解题的关键是根据题意证明ACOODB2、#【分析】先利用线段和差求EFBEBFa-b,根据全等三角形的性质BC=EF,再结合线段和差求出FC 可得答案【详解】解:BE,BF,EFBEBF,ABCDEF,BCEF,CF
15、BCBF,故答案为:【点睛】本题考查全等三角形的性质,线段和差,解题的关键是根据全等三角形的性质得出BC=EF3、【分析】如图(见解析),先根据三角形全等的判定定理证出,再根据全等三角形的性质可得,由此即可得出答案【详解】解:如图,在和中,故答案为:【点睛】本题考查了三角形全等的判定定理与性质等知识点,正确找出两个全等三角形是解题关键4、20【分析】题目给出等腰三角形有两条边长为2和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形【详解】解:分两种情况:当腰为2时,229,所以不能构成三角形;当腰为9时,299,所以能构成三角形,周长是:29920故答
16、案为:20【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键5、【分析】由三角形的外角的性质可得代入数据即可得到答案.【详解】解: 故答案为:【点睛】本题考查的是三角形的外角的性质,掌握“三角形的外角等于与它不相邻的两个内角之和”是解本题的关键.三、解答题1、证明见解析【分析】先根据角的和差可得,再根据三角形全等的判定定理证出,然后根据全等三角形的性质即可得证【详解】证明:,在和中,【点睛】本题考查了三角形全等的判定定理与性质等知识点,熟练掌握三角形全等的判定方
17、法是解题关键2、(1)仍是真命题,证明见解析(2)仍能得到,作图和证明见解析【分析】(1)由角边角得出和全等,对应边相等即可(2)由(1)问可知BM=CN,故可由边角边得出和全等,对应角相等,即可得出(1)在和中有故结论仍为真命题(2)BM=CNCM=ANAB=AC,在和中有故仍能得到,如图所示【点睛】本题考查了全等三角形的判定和性质,从判定两个三角形全等的方法可知,要判定两个三角形全等,需要知道这两个三角形分别有三个元素(其中至少一个元素是边)对应相等,这样就可以利用题目中的已知边角迅速、准确地确定要补充的边角,有目的地完善三角形全等的条件,从而得到判定两个三角形全等的思路3、(1)证明见解
18、析;(2)证明见解析;(3)或【分析】(1)证明AFDEAC,根据全等三角形的性质得到DF=AC,等量代换证明结论;(2)作FDAC于D,证明FDGBCG,得到DG=CG,求出CE,CB的长,得到答案;(3)过F作FDAG的延长线交于点D,根据全等三角形的性质得到CG=GD,AD=CE=7,代入计算即可【详解】(1)证明:FDAC,FDA=90,DFA+DAF=90,同理,CAE+DAF=90,DFA=CAE,在AFD和EAC中,AFDEAC(AAS),DF=AC,AC=BC,FD=BC;(2)作FDAC于D,由(1)得,FD=AC=BC,AD=CE,在FDG和BCG中,FDGBCG(AAS)
19、,DG=CG=1,AD=2,CE=2,BC=AC=AG+CG=4,E点为BC中点;(3)当点E在CB的延长线上时,过F作FDAG的延长线交于点D,BC=AC=4,CE=CB+BE=7,由(1)(2)知:ADFECA,GDFGCB,CG=GD,AD=CE=7,CG=DG=1.5,AG=CG+AC=5.5,同理,当点E在线段BC上时,AG= AC -CG+=2.5,故答案为:或【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键4、(1)30;(2)BAD2CDE,理由见解析;(3)BAD2CDE【分析】(1)根据三角形的外角的性质求出ADC,结合图形计算即可
20、;(2)设BADx,根据三角形的外角的性质求出ADC,结合图形计算即可;(3)设BADx,仿照(2)的解法计算【详解】解:(1)ADC是ABD的外角,ADCBAD+B105,DAEBACBAD30,ADEAED75,CDE1057530;(2)BAD2CDE,理由如下:设BADx,ADCBAD+B45+x,DAEBACBAD90x,ADEAED,CDE45+xx,BAD2CDE;(3)设BADx,ADCBAD+BB+x,DAEBACBAD1802Cx,ADEAEDC+x,CDEB+x(C+x)x,BAD2CDE【点睛】本题考查了三角形内角和和外角的性质,解题关键是熟练掌握三角形内角和和外角性质,通过设参数计算,发现角之间的关系5、AP=AQ,理由见详解【分析】由题意易得BNP=CMP=90,则有ABP+BPN=QCA+MPC=90,然后可得ABP=QCA,进而可证ABPQCA,最后问题可求解【详解】解:AP=AQ,理由如下:BM、CN都是ABC的高,BNP=CMP=90,ABP+BPN=QCA+MPC=90,BPN=MPC,ABP=QCA,在ABP和QCA中,ABPQCA(SAS),AP=AQ【点睛】本题主要考查三角形的高线、直角三角形的性质及全等三角形的性质与判定,熟练掌握三角形的高线、直角三角形的性质及全等三角形的性质与判定是解题的关键