《备考特训2022年石家庄栾城区中考数学三年高频真题汇总-卷(Ⅱ)(含详解).docx》由会员分享,可在线阅读,更多相关《备考特训2022年石家庄栾城区中考数学三年高频真题汇总-卷(Ⅱ)(含详解).docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 2022年石家庄栾城区中考数学三年高频真题汇总 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,是的边上的中线,则的取值范围为( )ABCD2、
2、如果一个角的余角等于这个角的补角的,那么这个角是( )ABCD3、点A,B在数轴上的位置如图所示,其对应的数分别是a和b,对于以下结论:(1)ba0;(2)|a|b|;(3)a+b0;(4)0其中正确的是( )A(1)(2)B(2)(3)C(3)(4)D(1)(4)4、下列分式中,最简分式是( )ABCD5、下列变形中,正确的是( )A若,则B若,则C若,则D若,则6、石景山某中学初三班环保小组的同学,调查了本班名学生自己家中一周内丢弃的塑料袋的数量,数据如下(单位:个),若一个塑料袋平铺后面积约为,利用上述数据估计如果将全班名同学的家庭在一周内共丢弃的塑料袋全部铺开,面积约为( )ABCD7
3、、如果是一元二次方程的一个根,那么常数是( )A2B-2C4D-48、如图是三阶幻方的一部分,其每行、每列、每条对角线上三个数字之和都相等,则对于这个幻方,下列说法错误的是( )A每条对角线上三个数字之和等于B三个空白方格中的数字之和等于C是这九个数字中最大的数D这九个数字之和等于 线 封 密 内 号学级年名姓 线 封 密 外 9、下列各式:中,分式有( )A1个B2个C3个D4个10、某种速冻水饺的储藏温度是,四个冷藏室的温度如下,不适合储藏此种水饺是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若,则_.2、如图,在中,F是边上的中点,则_1(填“”
4、“=”或“”)3、如图,在ABC中,BC=3cm,BAC=60,那么ABC能被半径至少为 cm的圆形纸片所覆盖4、用一个圆心角为120,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是_5、如图,若满足条件_,则有ABCD,理由是_(要求:不再添加辅助线,只需填一个答案即可)三、解答题(5小题,每小题10分,共计50分)1、如图,二次函数的图象顶点坐标为(1,2),且过(1,0)(1)求该二次函数解析式;(2)当时,则函数值y得取值范围是 2、已知:二次函数图象的顶点坐标为,且经过点;求此二次函数的解析式3、(1)计算:;(2)解方程:4、某电商的商品平均每天可销售40件, 每件盈利5
5、0元临近春节, 电商决定降价促销 经调查表明: 每件商品每降低1元, 其日平均销量将增加2件 设商品每件降价元, 日销併利润为元(1)写出关于的函数表达式;(2)当降价多少元时, 日销售利润最大? 最大利润是多少元?5、如图1,O为直线AB上一点,过点O作射线OC,AOC30,将一直角三角尺(M30)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方 线 封 密 内 号学级年名姓 线 封 密 外 (1)若将图1中的三角尺绕点O以每秒5的速度,沿顺时针方向旋转t秒,当OM恰好平分BOC时,如图2求t值;试说明此时ON平分AOC;(2)将图1中的三角尺绕点O顺时针旋转,
6、设AON,COM,当ON在AOC内部时,试求与的数量关系;(3)如图3若AOC60,将三角尺从图1的位置开始绕点O以每秒5的速度沿顺时针方向旅转当ON与OC重合时,射线OC开始绕点O以每秒20的速度沿顺时针方向旋转,三角尺按原来的速度和方向继续旋转,当三角板运动到OM边与OA第一次重合时停止运动当射线OC运动到与OA第一次重合时停止运动设三角形运动的时间为t那么在旋转的过程中,是否存在某个时刻,使得ON,OM两条边所在的射线及射线OC,三条射线中的某一条射线是另两条射线的角平分线?若存在,直接写出所有满足条件的t的值,若不存在,请说明理由-参考答案-一、单选题1、C【分析】延长至点E,使,连接
7、,证明,可得,然后运用三角形三边关系可得结果【详解】如图,延长至点E,使,连接为的边上的中线,在和中,在中,即,故选:C【点睛】本题考查了全等三角形的判定与性质,三角形三边关系,根据中点倍长法构造全等三角形是解题的关 线 封 密 内 号学级年名姓 线 封 密 外 键2、C【分析】设这个角是,根据题意得,解方程即可【详解】解:设这个角是,根据题意得,解得x=60,故选:C【点睛】此题考查角度计算,熟练掌握一个角的余角及补角定义,并正确列得方程解决问题是解题的关键3、B【分析】根据图示,判断a、b的范围:3a0,b3,根据范围逐个判断即可.【详解】解:根据图示,可得3a0,b3,(1)ba0,故错
8、误;(2)|a|b|,故正确;(3)a+b0,故正确;(4)0,故错误故选B【点睛】此题主要考查了绝对值的意义和有理数的运算符号的判断,以及数轴的特征和应用,要熟练掌握,解答此题的关键是判断出a、b的取值范围4、C【详解】【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分【详解】A、分式的分子与分母中的系数34和85有公因式17,可以约分,故A错误;B、=yx,故B错误;C、分子分母没有公因式,是最简分式,故C正确;D、=,故D错误,故选C【点睛】本题考查了最简分式,熟
9、练掌握最简分式的概念是解题的关键.分式的化简过程,首先要把分子分母分解因式,然后进行约分5、B【分析】根据等式的性质,对选项逐个判断即可【详解】解:选项A,若,当时,不一定成立,故错误,不符合题意;选项B,若,两边同时除以,可得,正确,符合题意;选项C,将分母中的小数化为整数,得,故错误,不符合题意; 线 封 密 内 号学级年名姓 线 封 密 外 选项D,方程变形为,故错误,不符合题意;故选B【点睛】此题考查了等式的性质,熟练掌握等式的有关性质是解题的关键6、D【分析】先求出每一名学生自己家中一周内丢弃的塑料袋的数量的平均数,即可得到每名同学丢弃的塑料袋平铺后面积那么全班40名同学的家庭在一周
10、内共丢弃的塑料袋全部铺开所占面积即可求出【详解】由题意可知:本班一名学生自己家中一周内丢弃的塑料袋的数量的平均数为=10个,则每名同学丢弃的塑料袋平铺后面积约为100.25m2=2.5,全班40名同学的家庭在一周内共丢弃的塑料袋全部铺开,面积约为402.5=100m2故选D【点睛】本题考查了用样本的数据特征来估计总体的数据特征,利用样本中的数据对整体进行估算是统计学中最常用的估算方法7、C【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值即用这个数代替未知数所得式子仍然成立【详解】把x=2代入方程x2=c可得:c=4故选C【点睛】本题考查的是一元二次方程的根即
11、方程的解的定义8、B【分析】根据每行、每列、每条对角线上三个数字之和都相等,则由第1列三个已知数5+4+918可知每行、每列、每条对角线上三个数字之和为18,于是可分别求出未知的各数,从而对四个选项进行判断【详解】每行、每列、每条对角线上三个数字之和都相等,而第1列:5+4+918,于是有5+b+318,9+a+318,得出a6,b10,从而可求出三个空格处的数为2、7、8,所以答案A、C、D正确,而2+7+81718,答案B错误,故选B【点睛】本题考查的是数字推理问题,抓住条件利用一元一次方程进行逐一求解是本题的突破口9、B【分析】根据分式的定义判断即可【详解】 线 封 密 内 号学级年名姓
12、 线 封 密 外 解:,是分式,共2个,故选B【点睛】本题考查分式,解题的关键是正确理解分式的定义,本题属于基础题型10、B【分析】根据有理数的加减运算,可得温度范围,根据温度范围,可得答案【详解】解:-18-2=-20,-18+2=-16,温度范围:-20至-16,故选:B【点睛】本题考查了正数和负数,有理数的加法运算是解题关键,先算出适合温度的范围,再选出不适合的温度二、填空题1、【分析】根据条件|m|=m+1进行分析,m的取值可分三种条件讨论,m为正数,m为负数,m为0,讨论可得m的值,代入计算即可【详解】解:根据题意,可得m的取值有三种,分别是:当m0时,则可转换为m=m+1,此种情况
13、不成立当m=0时,则可转换为0=0+1,此种情况不成立当m0时,则可转换为-m=m+1,解得,m=将m的值代入,则可得(4m+1)2011=4()+12011=-1故答案为:-1【点睛】本题考查了含绝对值符号的一元一次方程和代数式的求值解题时,要注意采用分类讨论的数学思想2、【分析】连接AE,先证明得出,根据三角形三边关系可得结果【详解】如图,连接,在和中,在中, 线 封 密 内 号学级年名姓 线 封 密 外 F是边上的中点,故答案为:【点睛】本题考查了全等三角形的判定与性质,三角形三边关系,熟知全等三角形的判定定理与性质是解题的关键3、【分析】作圆的直径,连接,根据圆周角定理求出,根据锐角三
14、角函数的定义得出,代入求出即可【详解】解:作圆O的直径CD,连接BD,圆周角A、D所对弧都是,D=A=60CD是直径,DBC=90sinD=又BC=3cm,sin60=,解得:CD=的半径是(cm)ABC能被半径至少为cm的圆形纸片所覆盖【点睛】本题考查了圆周角定理,三角形的外接圆与外心,锐角三角函数的定义的应用,关键是利用外接圆直径构造直角三角形求半径.4、2【详解】解:扇形的弧长=2r,圆锥的底面半径为r=2故答案为25、答案不唯一,如; 同位角相等,两直线平行 【分析】根据平行线的判定(同位角相等、内错角相等或同旁内角互补)写出一组条件即可.【详解】若根据同位角相等,判定可得:,AB/C
15、D(同位角相等,两直线平行).故答案是:答案不唯一,如; 同位角相等,两直线平行.【点睛】考查了平行线的判定解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角,再根据平行线的判定定理(同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行)解题 线 封 密 内 号学级年名姓 线 封 密 外 三、解答题1、(1);(2)【分析】(1)首先设出抛物线的顶点式表达式为,然后将(1,0)代入求解即可;(2)根据二次函数的增减性和对称性可得当,取最大值,当,取最小值,然后代入求解即可【详解】解:(1)由抛物线顶点式表达式得:将(1,0)代入得:,解得:二次函数解析式为:
16、;(2),抛物线对称轴为:,开口向上,当,取最大值,当,取最小值-2,当时,函数值y得取值范围是:【点睛】此题考查了待定系数法求二次函数表达式,二次函数的图像和性质,解题的关键是熟练掌握待定系数法求二次函数表达式,二次函数的图像和性质2、【分析】根据抛物线的顶点坐标设出,抛物线的解析式为:,再把代入,求出的值,即可得出二次函数的解析式【详解】解:设抛物线的解析式为:,把代入解析式得,则抛物线的解析式为:【点睛】本题主要考查了用待定系数法求二次函数解析式,解题的关键是掌握在已知抛物线顶点坐标的情况下,通常用顶点式设二次函数的解析式3、(1)-4;(2)【分析】(1)原式先算乘方及绝对值,再算乘除
17、,最后算减法即可得到结果;(2)方程去分母,去括号,移项,合并同类项,把x系数化为1,即可求出解【详解】解:(1)原式=16(-8)-(30-30)=-2-(12-10)=-2-2=-4;(2)去分母得:3(3-x)=2(x+4), 线 封 密 内 号学级年名姓 线 封 密 外 去括号得:9-3x=2x+8,移项得:-3x-2x=8-9,合并得:-5x=-1,解得:x=【点睛】此题考查了解一元一次方程,以及有理数的混合运算,解方程的步骤为:去分母,去括号,移项,合并同类项,把未知数系数化为1,求出解4、(1);(2)当降价15元时,日销售利润最大,最大利润是2450元【分析】(1)每件降价元时
18、,每件盈利元,每天可售出件,由此可得;(2)对,由二次函数性质可知当,元(1)解:每件降价元时,每件盈利元,每天可售出件,则该网店一天可获利润为;(2)解:,当,(元,答:当降价15元时,日销售利润最大,最大利润是2450元【点睛】本题考查了二次函数的应用,解题的关键是注意寻找等量关系,并且学会使用二次函数的性质来求最值5、(1)t=3;见解析;(2)=+60;(3)t=15或t=24或t=54【分析】(1)求出BOC,利用角平分线的定义求出BOM,进而求出AON,然后列方程求解;求出CON=15即可求解;(2)用含t的代数式表示出和,消去t即可得出结论;(3)分三种情况列方程求解即可【详解】
19、解:(1)AOC30,COM=60,BOC=150,OM恰好平分BOC,BOM=BOC=75,AON=180-90-75=15,5t=15,t=3;AOC=30,AON=15,CON=15,此时ON平分AOC;(2)由旋转的性质得,AON=5t,COM=60+5t, 线 封 密 内 号学级年名姓 线 封 密 外 把代入,得=+60;(3)当ON与OC重合时,605=12秒,当OC与OA重合时,(360-60)20+12=27秒,当OC平分MON,且OC未与OA重合时,则CON=45,由题意得,60+20(t-12)-5t=45,解得t=15;当OM平分CON,且OC未转到OA时,则CON=180,由题意得,60+20(t-12)-5t=180,解得t=24;当OM平分CON,且OC转到OA时,则AOM=90,由题意得,360-90=5t,t=54,综上可知,当t=15或t=24或t=54时, ON,OM两条边所在的射线及射线OC,三条射线中的某一条射线是另两条射线的角平分线【点睛】本题考查了角的和差,角平分线的定义,以及一元一次方程的定义,正确识图是解答本题的关键