精品解析2022年人教版八年级数学下册第十七章-勾股定理定向训练试题(无超纲).docx

上传人:可****阿 文档编号:30751390 上传时间:2022-08-06 格式:DOCX 页数:30 大小:552.23KB
返回 下载 相关 举报
精品解析2022年人教版八年级数学下册第十七章-勾股定理定向训练试题(无超纲).docx_第1页
第1页 / 共30页
精品解析2022年人教版八年级数学下册第十七章-勾股定理定向训练试题(无超纲).docx_第2页
第2页 / 共30页
点击查看更多>>
资源描述

《精品解析2022年人教版八年级数学下册第十七章-勾股定理定向训练试题(无超纲).docx》由会员分享,可在线阅读,更多相关《精品解析2022年人教版八年级数学下册第十七章-勾股定理定向训练试题(无超纲).docx(30页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、人教版八年级数学下册第十七章-勾股定理定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、有下列四个命题是真命题的个数有( )个垂直于同一条直线的两条直线互相垂直;有一个角为的等腰三角形是等边三角形;

2、三边长为,3的三角形为直角三角形;顶角和底边对应相等的两个等腰三角形全等A1B2C3D42、为了测量学校的景观池的长AB,在BA的延长线上取一点C,使得米,在点C正上方找一点D(即),测得,则景观池的长AB为( )A5米B6米C8米D10米3、我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”,如图1,图2由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3若正方形EFGH的边长为3,则S1+S2+S3的值是( )A20B27C25D494、如图,点A在点O的北偏西的方向5km处,根据已

3、知条件和图上尺规作图的痕迹判断,下列说法正确的是( )A点B在点A的北偏东方向5km处B点B在点A的北偏东方向5km处C点B在点A的北偏东方向km处D点B在点A的北偏东方向km处5、如图,在数轴上,点O对应数字O,点A对应数字2,过点A作AB垂直于数轴,且AB=4,连接OB,绕点O顺时针旋转OB,使点B落在数轴上的点C处,则点C所表示的数介于( )A2和3之间B3和4之间C4和5之间D5和6之间6、如图,RtABC中,ABC90,CAB的角平分线交BC于M,ACB的外角平分线与AM交于点D,与AB的延长线交于点N,过D作DECN交CB的延长线于点P,交AN于点E,连接CE并延长交PN于点Q,则

4、下列结论: ADP45;ANCACP;DCED;NQCDPQ;CNDEEP,其中正确的结论有( )个A2B3C4D57、如图,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的边长为()A64B16C8D48、如图,RtABC中,BAC90,分别以ABC的三边为边作正方形ABDE,正方形BCFG,正方形ACHI,AI交CF于点J三个正方形没有重叠的部分为阴影部分,设四边形BGFJ的面积为S1,四边形CHIJ的面积为S2,若S1S212,SABC4,则正方形BCFG的面积为()A16B18C20D229、如图,在ABC中,BC2,C45,若D是AC的三等分点(ADCD),且ABB

5、D,则AB的长为( )ABCD10、如图,在RtABC中,ABC=90,AC=10,AB=6,则图中五个小直角三角形的周长之和为( )A14B16C18D24第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,ABBC,CDBC,垂足分别为B,C,P为线段BC上一点,连结PA,PD已知AB5,DC4,BC12,则AP+DP的最小值为_2、在平面直角坐标系中,长方形ABCD按如图所示放置,O是AD的中点,且A、B、C的坐标分别为(5,0),(5,4),(5,4),点P是BC上的动点,当ODP是腰长为5的等腰三角形时,则点P的坐标为_ 3、已知:点A的坐标为,点B坐标为,

6、那么点A和点B两点间的距离是_4、如图,在ABC中,D是AC边上的中点,连接BD,把BDC沿BD翻折,得到BDC,DC与AB交于点E,连接AC,若ADAC2,BD3,则点D到BC的距离为_5、如图,点P是AOB的角平分线上一点,过点P作PCOA交OB于点C,过点P作PDOA于点D,若AOB60,OC2,则PD_三、解答题(5小题,每小题10分,共计50分)1、如图,在ABC中,C90 (1)用尺规作图,保留作图痕迹,不写作法:在边BC上求作一点D,使得点D到AB的距离等于DC的长;(2)在(1)的条件下,若AC6,AB10,求CD的长2、如图,有一张四边形纸片,经测得,(1)求、两点之间的距离

7、(2)求这张纸片的面积3、已知RtABC中,AC=BC,ACB90,F为AB边的中点,且DF=EF,DFE90,D是BC上一个动点如图1,当D与C重合时,易证:CD2DB22DF2;(1)当D不与C、B重合时,如图2,CD、DB、DF有怎样的数量关系,请直接写出你的猜想,不需证明(2)当D在BC的延长线上时,如图3,CD、DB、DF有怎样的数量关系,请写出你的猜想,并加以证明4、如图,在中,平分交于点,求CD的长.5、在RtABC中,A90,已知AC2,AB1,BCx,求代数式(x1)2+2x的值-参考答案-一、单选题1、C【分析】根据等边三角形的判定定理、勾股定理逆定理、全等三角形的判定判断

8、即可【详解】:在同一平面内,垂直于同一条直线的两条直线互相垂直,故错误;:有一个角为的等腰三角形是等边三角形,故正确;:,边长为,3的三角形为直角三角形,故正确;:顶角相等则等腰三角形三个角都对应相等,再加上底边对应相等,这两个等腰三角形全等,故正确;综上是真命题的有3个;故选:C【点睛】本题考查命题的真假,结合等边三角形的判定、勾股定理逆定理、全等三角形的判定等知识综合判断是解题的关键2、D【分析】利用勾股定理求出CD的长,进而求出BC的长, 即可求解【详解】解:, , , , , , , ,故选:D【点睛】本题考查勾股定理的应用,解题关键是掌握勾股定理3、B【分析】根据八个直角三角形全等,

9、四边形ABCD,四边形EFGH,四边形MNKT是正方形,得出CGKG,CFDGKF,再根据S1(CG+DG)2,S2GF2,S3(KFNF)2,S1+S2+S33GF2,即可求解【详解】解:在RtCFG中,由勾股定理得:CG2+CF2=GF2,八个直角三角形全等,四边形ABCD,四边形EFGH,四边形MNKT是正方形,CG=KG=FN,CF=DG=KF,S1=(CG+DG)2=CG2+DG2+2CGDG=CG2+CF2+2CGDG=GF2+2CGDG,S2=GF2,S3=(KF-NF)2,=KF2+NF2-2KFNF=KF2+KG2-2DGCG=FG2-2CGDG,正方形EFGH的边长为3,G

10、F2=9,S1+S2+S3=GF2+2CGDG+GF2+FG2-2CGDG=3GF2=27,故选:B【点睛】本题主要考查了勾股定理的应用,用到的知识点是勾股定理和正方形、全等三角形的性质等知识,根据已知得出S1+S2+S3=3GF2=27是解题的关键4、D【分析】过A作ACOM交ON于C,作ADON,求出AB及DAB即可得到答案【详解】过A作ACOM交ON于C,作ADON,如图:MON=90,AOC=30,AOM=120,由作图可知,OB平分AOM,AOB=AOM=60,B=30,在RtAOB中,OB=2OA=10,AOC=30,ACO=90,CAO=60,DAB=90-BAC=CAO=60,

11、B在A北偏东60方向km处,故选:D【点睛】本题考查作图-基本作图、方向角、角平分线的作法等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型5、C【分析】因为OAB是一个直角三角形,且有OC=OB,所以可求得OB的长度即得C点所表示的数,可判断其大小【详解】解:ABOA在直角三角形OAB中有 OA2+AB2=OB245 又OC=OB点C所表示的数介于4和5之间故选:C【点睛】此题考查勾股定理,无理数的估算,重点就是由垂直而组成的直角三角形的性质,从而解得答案6、B【分析】根据角平分线的定义,可得 ,再由三角形外角的性质,可得 ,再由DECN,可得ADP=45;延长PD与AC交于点 ,可

12、证得 ,从而得到 ;然后根据ADCADE,可得DC=ED;根据题意可得CQPN,且CDE、CQN、PQE均为等腰直角三角形,从而得到CQPNQE,进而得到 ;作EKCE交CN于点K,可得CEK是等腰直角三角形,从而得到CD=DK,CK=2CD,进而得到EKNCEP,从而得到PE=KN,得到CN= 2DE+EP,即可求解【详解】解:如图,CAB的角平分线交BC于M,ACB的外角平分线与AM交于点D, ,HCD=DAC+ADC,PCH=CAB+ABC=2HCD, ,DECN,CDP=90,ADP=45,故正确;如图,延长PD与AC交于点 ,1=PCD,DECN, , ,ADC=45,DPCN,ED

13、A=CDA=45, , , ,故正确;在ADC和ADE中,ADC=ADE=45,AD=AD,DAC=DAE,ADCADE(ASA),DC=ED,故正确;ABC=90,BNCP,DECN,E为CPN垂心,CQPN,且CDE、CQN、PQE均为等腰直角三角形,PQC=EQN=90,PQ=EQ,CQ=NQ, ,CQPNQE(SAS),CQ=NQ,CQ=EQ+CE=PQ+CE=PQ+CD,PEQ=45, ,故错误;如图,作EKCE交CN于点K,CDE为等腰直角三角形,DCE=45,CKE=45,CE=EK,CEK是等腰直角三角形,CD=DK,CK=2CD,KNE+PCN=CPE+PCN=90,KNE=

14、CPE,PEQ=CKE=45,CEP=EKN=135,在EKN和CEP中,EKN=CEP,KNE=CPE,CE=EK,EKNCEP(AAS),PE=KN,CN=CK+KN=2CD+EP,CN=CK+KN=2DE+EP,故错误正确的有,有3个故选:B【点睛】本题主要考查了全等三角形的判定和性质,等腰三角形的性质的判定,勾股定理等知识,熟练掌握全等三角形的判定和性质,等腰三角形的性质的判定,勾股定理等知识是解题的关键7、C【分析】根据勾股定理求出正方形A的面积,根据算术平方根的定义计算即可【详解】解:由勾股定理得,正方形A的面积28922564,字母A所代表的正方形的边长为8,故选:C【点睛】本题

15、考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c28、C【分析】设BCa,ACb,ABc,由正方形面积和三角形面积得S正方形BCFGS正方形ACHI16,即a2b216,再由勾股定理得a2b2c2,则c216,求出c4,然后求出b2,则a2b2+c220,即可求解【详解】解:设BCa,ACb,ABc,S1S正方形BCFGSABCSACJ,S2S正方形ACHISACJ,S1S2S正方形BCFGSABCSACJS正方形ACHI+SACJS正方形BCFG4S正方形ACHI12,S正方形BCFGS正方形ACHI16,即a2b216,RtABC中,BAC90,a

16、2b2c2,c216,c4(负值已舍去),SABCbc2b4,b2,a2b2+c216+2220,正方形BCFG的面积为20,故选:C【点睛】本题考查了勾股定理,设参数表示三角形的边长,根据已知条件求得a2b216是解题的关键9、B【分析】作BEAC于E,根据等腰三角形三线合一性质可得AE=DE,根据C45,得出EBC=180-C-BEC=180-45-90=45,可得BE=CE,利用勾股定理求出CE=BE=2,根据D是AC的三等分点得出AE=DE=CD,求出CD=1,利用勾股定理即可【详解】解:作BEAC于E,ABBD,AE=DE,C45,EBC=180-C-BEC=180-45-90=45

17、,BE=CE, 在RtBEC中,CE=BE=2,D是AC的三等分点,CD=,AD=AC-CD=,AE=DE=CD,CE=CD+DE=2CD=2,CD=1,AE=1,在RtABE中,根据勾股定理故选B【点睛】本题考查等腰三角形的性质,等腰直角三角形判定与性质,勾股定理,三等分线段,掌握等腰三角形的性质,等腰直角三角形判定与性质,勾股定理,三等分线段是解题关键10、D【分析】由图形可知,内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为大直角三角形的周长【详解】解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为ACBCAB,B

18、C,五个小直角三角形的周长之和为ACBCAB24故选:D【点睛】主要考查了勾股定理的知识和平移的性质,难度适中,需要注意的是:平移前后图形的大小、形状都不改变二、填空题1、15【分析】延长AB至点E,使BE=AB,过点D作DFAB于F,得到DF及EF的长,当点E、P、D共线时,AP+DP=DE有最小值,利用勾股定理求出DE即可【详解】解:延长AB至点E,使BE=AB,过点D作DFAB于F,则BF=CD=4,DF=BC=12,AP+DP=EP+DP,当点E、P、D共线时,AP+DP=DE有最小值,在直角三角形DEF中,EF=BE+BF=5+4=9,AP+DP的最小值为15,故答案为:15【点睛】

19、此题考查最短路径问题,勾股定理,熟记最短路径问题构造直角三角形解决是解题的关键2、 (2,4)或(3,4)或(3,4)【分析】先根据题意得到OD=OA=5,CD=4,然后分当时和当时进行讨论求解即可【详解】解:四边形ABCD是长方形,A、B、C的坐标分别为(5,0),(5,4),(5,4),OD=OA=5,CD=4,如图所示,当时,过点作轴于E,的坐标为(-3,4),同理可求出的坐标为(3,4);如图所示,当时,设CD于y轴交于F,则CF=5,OF=4,的坐标为(-2,4),综上所述,点P的坐标为(2,4)或(3,4)或(3,4),故答案为:(2,4)或(3,4)或(3,4)【点睛】本题主要考

20、查了坐标与图形,勾股定理,等腰三角形的定义,解题的关键在于能够熟练掌握等腰三角形的定义3、5【分析】根据两点间距离公式求解即可【详解】点A的坐标为,点B坐标为,点A和点B两点间的距离是故答案为:5【点睛】本题考查两点间距离,若,则两点间的距离是,掌握两点间距离公式是解题的关键4、【分析】根据题意连接CC,交BD于点M,过点D作DHBC于点H,由翻折知,BDCBDC,BD垂直平分CC,证ADC为等边三角形,利用解直角三角形求出DM=1,CM=DM=,BM=2,在RtBMC中,利用勾股定理求出BC的长,在BDC中利用面积法求出DH的长,则可得出答案【详解】解:如图,连接CC,交BD于点M,过点D作

21、DHBC于点H,AD=AC=2,D是AC边上的中点,DC=AD=2,由翻折知,BDCBDC,BD垂直平分CC,DC=DC=2,BC=BC,CM=CM,AD=AC=DC=2,ADC为等边三角形,ADC=ACD=CAC=60,DC=DC,DCC=DCC=60=30,在RtCDM中,DCC=30,DC=2,DM=1,CM=DM=,BM=BD-DM=3-1=2,在RtBMC中,BC=,SBDC=BCDH=BDCM,DH=,DBC=DBC,点D到BC的距离为故答案为:【点睛】本题考查三角形翻折问题和解直角三角形以及勾股定理等,解题的关键是掌握相关性质并通过面积法求线段的长度5、【分析】作,则,由等腰三角

22、形的性质可得,在中,利用勾股定理即可求解【详解】解:作,如下图:平分,在中,由勾股定理得,故答案为:【点睛】此题考查了角平分线的性质,勾股定理,三角形外角的性质,等腰三角形的判定与性质以及含直角三角形的性质等,解题的关键是灵活运用相关性质进行求解三、解答题1、(1)图见详解;(2)3.【分析】(1)根据题意作BAC的平分线交BC于D,根据角平分线的性质得到点D满足条件;(2)根据题意作DEAB于E,先根据勾股定理计算出BC=8,再根据角平分线性质得到DC=DE,通过证明RtACDRtAED得到AE=AC=6,则EB=4,设CD=x,则BD=8-x,在RtBED中,利用勾股定理得到x2+42=(

23、8-x)2,解方程求出即可【详解】解:(1)如图,点D即为所作;(2)作DEAB于E,如上图,在RtABC中,BC=8,AD为角平分线,DC=DE,在RtACD和RtAED中,RtACDRtAED(HL),AE=AC=6,EB=AB-AE=10-6=4设CD=x,则DE=x,则BD=8-x,在RtBED中,x2+42=(8-x)2,解得x=3,CD=3【点睛】本题考查作图-复杂作图以及全等三角形判定和角平分线定理、勾股定理,注意掌握复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成

24、基本作图,逐步操作2、(1)15cm;(2)114cm2【分析】(1)连接,在中利用勾股定理求解即可;(2)先用勾股定理的逆定理证明,然后根据三角形面积公式求解即可【详解】解:(1)如图所示,连结在中,由勾股定理,得(2),四边形的面积【点睛】本题主要考查了勾股定理和勾股定理的逆定理,熟知勾股定理和勾股定理的逆定理是解题的关键3、(1)CD2+DB2=2DF2 ;(2)CD2+DB2=2DF2,证明见解析【分析】(1)由已知得,连接CF,BE,证明得CD=BE,再证明为直角三角形,由勾股定理可得结论;(2)连接CF,BE,证明得CD=BE,再证明为直角三角形,由勾股定理可得结论【详解】解:(1

25、)CD2+DB2=2DF2 证明:DF=EF,DFE90, 连接CF,BE,如图 ABC是等腰直角三角形,F为斜边AB的中点 ,即 , 又 在和中 , ,CD2+DB2=2DF2 ;(2)CD2+DB2=2DF2 证明:连接CF、BECF=BF,DF=EF又DFC+CFE=EFB+CFB=90DFC=EFBDFCEFB CD=BE,DCF=EBF=135 EBD=EBFFBD=13545=90 在RtDBE中,BE2+DB2=DE2 DE2=2DF2 CD2+DB2=2DF2【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、证明三角形全等是解决问题的关键,学会添加常用辅助线,构造

26、全等三角形解决问题4、【分析】根据勾股定理得到AC6,过D作DEAB于E,根据角平分线的性质得到CDDE,根据全等三角形的性质得到BEBC8,根据勾股定理即可得到结论【详解】解:在RtACB中,C90,BC8,AB10,AC6,过D作DEAB于E,BD平分ABC,C90,CDDE,在RtBCD与RtBED中,RtBCDRtBED(HL),BEBC8,AE2,AD2DE2AE2,CD【点睛】本题考查了勾股定理,角平分线的性质,全等三角形的判定和性质,正确的作出辅助线构造全等三角形是解题的关键5、6【分析】AC是直角边,根据勾股定理得出x的值,进而代入解答即可【详解】解:在RtABC中,AC2,BC1,ABx,(x1)2+2xx22x+1+2xx2+15+16;代数式(x1)2+2x的值是6【点睛】本题考查了勾股定理,代数式求值,解题的关键是掌握勾股定理求出x的值

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁