备考练习2022年上海中考数学三模试题(含答案及解析).docx

上传人:可****阿 文档编号:30750826 上传时间:2022-08-06 格式:DOCX 页数:15 大小:231.20KB
返回 下载 相关 举报
备考练习2022年上海中考数学三模试题(含答案及解析).docx_第1页
第1页 / 共15页
备考练习2022年上海中考数学三模试题(含答案及解析).docx_第2页
第2页 / 共15页
点击查看更多>>
资源描述

《备考练习2022年上海中考数学三模试题(含答案及解析).docx》由会员分享,可在线阅读,更多相关《备考练习2022年上海中考数学三模试题(含答案及解析).docx(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 线 封 密 内 号学级年名姓 线 封 密 外 2022年上海中考数学三模试题 考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、两个素数的积一定是( )A素数B奇数C偶数D合数2、一根铁丝的长度是7米,如果把它

2、平均分成5段,那么每段的长度是( )A米BC米D3、下面分数中可以化为有限小数的是( )ABCD4、如果,则下列等式:;其中成立的个数是( )A0B1C2D35、计算(2)100+(2)101所得的结果是()A2100B1C2D21006、下列说法正确的是( )A任何数都有倒数B一个数的倒数一定不等于它本身C如果两个数互为倒数,那么它们的乘积是1D的倒数是7、如图,l1l2l3,直线a,b与l1、l2、l3分别相交于A、B、C和点D、E、F若,DE4,则EF的长是()ABC6D108、如果(x2)(x3)=x2pxq,那么p、q的值是( )Ap=5,q=6Bp=1,q=6Cp=1,q=6Dp=

3、5,q=69、在RtABC中,各边都扩大5倍,则锐角A的正切函数值( )A不变B扩大5倍C缩小5倍D不能确定10、以下各数中,不能与,组成比例的是( )ABC1D第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在所有能被7整除的正整数中,最小的一个正整数是_2、12与18的最小公倍数是_ 线 封 密 内 号学级年名姓 线 封 密 外 3、一个扇形的圆心角是,则它的面积相当于和它同半径的圆面积的_(填几分之几)4、比较大小:_5、如果一个分数的分子是27,且与相等,那么这个分数的分母是_三、解答题(5小题,每小题10分,共计50分)1、解方程:2、化简求值:(x2y)2(

4、xy)(3xy)5y2(2x),其中x2,y3、求48与60的最大公因数和最小公倍数4、如图,抛物线yx2+bx+c与一条直线相交于A(1,0),C (2,3)两点(1)求抛物线和直线的解析式;(2)若动点P在抛物线上位于直线AC上方运动,求APC的面积最大值5、已知一个扇形的圆心角为135求:(1)若这个扇形的弧长为18.84厘米,这个扇形所在的圆的半径,(2)若这个扇形所在的圆的半径是4厘米,这个扇形的周长-参考答案-一、单选题1、D【分析】最小的素数为2,其余素数都为奇数则2与其它素数的积一定是偶数,除了2外,其它素数相乘的积是奇数,即可得出结论【详解】解:最小的素数为2,其余素数都为奇

5、数则2与其它素数的积一定是偶数,除了2外,其它素数相乘的积是奇数即两个素数的积的因数,除了1和它本身外,还有这两个素数,即积一定是合数故选:D【点睛】本题考查素数与合数,掌握素数与合数的概念是解题的关键2、A【分析】用总长度除以份数即可求解【详解】解:根据题意得,75=(米);答:每份的长度是米故选A【点睛】本题根据除法平均分的意义,列出除法算式进行求解 线 封 密 内 号学级年名姓 线 封 密 外 3、A【分析】根据题意可直接进行分数化简小数,然后排除选项即可【详解】A、,故符合题意;B、,故不符合题意;C、,故不符合题意;D、,故不符合题意;故选A【点睛】本题主要考查分数化小数,熟练掌握分

6、数化小数是解题的关键4、B【分析】根据比例的基本性质即可得出结论【详解】解:由,可得,故错误,正确故选B【点睛】此题考查的是比例的变形,掌握比例的基本性质是解题关键5、D【分析】根据乘方运算的法则先确定符号后,再提取公因式即可得出答案【详解】解:(2)100+(2)1012100221002100(12)2100,故选:D【点睛】本题主要考查的是乘方运算的法则,掌握乘方运算的法则,正确的确定符号是解题的关键6、C【分析】根据题意,对各题进行依次分析、进而得出结论【详解】解:A、0没有倒数,故选项错误;B、1的倒数是1,故选项错误;C、如果两个数互为倒数,那么他们的乘积一定是1,故选项正确;D、

7、a=0时,a没有倒数,故选项错误故选:C【点睛】本题考查了倒数的知识,属于基础题,比较简单,注意平时基础知识的积累7、C【分析】根据平行线分线段成比例可得,代入计算即可解答 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:l1l2l3,即,解得:EF6故选:C【点睛】本题主要考查平行线分线段成比例定理,熟悉定理是解题的关键8、B【分析】先根据多项式乘以多项式的法则,将(x-2)(x+3)展开,再根据两个多项式相等的条件即可确定p、q的值【详解】解:(x-2)(x+3)=x2+x-6,又(x-2)(x+3)=x2+px+q,x2+px+q=x2+x-6,9、A【分析】根据锐角三角函数的

8、定义解答即可【详解】因为三角函数值与对应边的比值有关,所以各边的长度都扩大5倍后,锐有A的各三角函数值没有变化,故选:A【点睛】本题考查的是锐角三角函数的定义,掌握三角函数值的大小只与角的大小是解题的关键10、B【分析】逆用比例的基本性质:两内项的积等于两外项的积;据此逐项分析后找出不能与,组成比例的一项即可【详解】A、因为,所以能与,组成比例;B、因为不能与,写成乘积相等式,所以不能与,组成比例;C、因为,所以能与,组成比例;D、因为,所以能与,组成比例;故选:B【点睛】本题考查了比例的基本性质,关键是熟悉并灵活运用比例的基本性质:两内项的积等于两外项的积二、填空题1、7【分析】一个数能被7

9、整除,这个数一定是7的倍数,即可求解【详解】解:7的倍数是7,14,最小的正整数是7, 线 封 密 内 号学级年名姓 线 封 密 外 故答案为:7【点睛】本题考查数的整除,理解整除的意义是解题的关键2、36【分析】根据最小公倍数的意义可知:最小公倍数是两个数公有的质因数和各自独有的质因数的乘积,据此解答【详解】12=223,18=233,12和18公有的质因数是:2和3,12独有的质因数是2,18独有的质因数是3,所以12和18的最小公倍数是:2323=36;故答案为:36【点睛】本题主要考查了两个数的最小公倍数的求法,注意先把两个数分别分解质因数,再找准公有的质因数和独有的质因数3、【分析】

10、根据扇形公式,S=和圆的面积公式S=r2,分别用字母和所给的数表示出扇形和圆的面积,用扇形的面积除以圆的面积就是要求的答案【详解】解:扇形的面积是:,和扇形同半径的圆面积是:r2,扇形的面积是它同半径的圆面积的:,故答案为:【点睛】此题主要考查了扇形和圆面积的公式的实际应用,解答时注意条件中没有告诉的量用字母表示4、【分析】先找出分母的最小公倍数,然后将,通分,再比较大小即可【详解】解:,故答案是:【点睛】本题考查了比较分数的大小和分数的通分,熟悉相关性质是解题的关键5、72【分析】根据题意可知,的分子乘以9得到27,同时研究分数的基本性质分母也乘以9,则得到72,即是分母【详解】解:, 线

11、封 密 内 号学级年名姓 线 封 密 外 这个分数的分母是72,故答案为:72【点睛】本题考查了分数的基本性质,比较简单三、解答题1、【分析】先根据比例基本性质:两内项之积等于两外项之积,化简方程,再依据等式的性质,方程两边同时除以即可求解【详解】由得:,【点睛】本题考查了依据等式的性质以及比例基本性质解方程,即等式两边同加上、同减去、同乘上或同除以一个不为0的数,等式仍相等2、,【分析】原式中括号中利用完全平方公式,多项式乘多项式法则计算,去括号合并后利用多项式除以单项式法则计算得到最简结果,把x与y的值代入计算即可求出值【详解】解:原式= ,当时,原式=【点睛】此题考查了整式的混合运算-化

12、简求值,熟练掌握运算法则及公式是解本题的关键3、最大公因数是12;最小公倍数是240【分析】最大公因数也就是这几个数的公有质因数的连乘积,最小公倍数是共有质因数与独有质因数的连乘积,对于两个数来说:两个数的公有质因数连乘积是最大公因数,两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数,由此解决问题即可【详解】解:48=22223,60=2235,所以48与60的最大公因数是223=12,最小公倍数是223225=240【点睛】此题主要考查求两个数的最大公因数与最小公倍数的方法:两个数的公有质因数连乘积是最大公因数,两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数;数字大的可以用

13、短除解答4、(1)yx2+2x+3;yx+1;(2)APC的面积最大值为【分析】 线 封 密 内 号学级年名姓 线 封 密 外 (1)利用待定系数法求抛物线和直线解析式;(2)设P点坐标,过点P作PQx轴于点H,交AC于点Q,用水平宽乘以铅垂高除以2表示的面积,然后求最值【详解】解:(1)由抛物线yx2+bx+c过点A(1,0),C(2,3),得:,解得:,抛物线的函数解析式为yx2+2x+3,设直线AC的函数解析式为ymx+n, 把A(1,0),C(2,3)代入,得,解得,直线AC的函数解析式为yx+1;(2)如图,过点P作PQx轴于点H,交AC于点Q,设P(x,x2+2x+3),则Q(x,

14、x+1),PQx2+2x+3(x+1)x2+x+2,SAPCSAPQ+SCPQPQ3(x2+x+2)(x)2+,0,当x时,APC的面积最大,最大值为【点睛】本题考查二次函数综合题,涉及解析式的求解,三角形面积的表示方法,解题的关键是掌握这些特定的解题方法进行求解5、(1)这个扇形所在的圆的半径为厘米;(2)这个扇形的周长17.42厘米【分析】(1)根据弧长公式即可求出半径(2)这个扇形的弧长是,然后再加上两条半径,即可得解【详解】(1)因为,所以(厘米);答:这个扇形所在的圆的半径是8厘米;(2)因为,(厘米)所以,这个扇形的弧(厘米),这个扇形的周长为17.42厘米答:这个扇形的周长是17.42厘米 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】本题主要考查了弧长公式的实际应用

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁