《【高频真题解析】2022年北京市海淀区中考数学模拟真题-(B)卷(含答案及解析).docx》由会员分享,可在线阅读,更多相关《【高频真题解析】2022年北京市海淀区中考数学模拟真题-(B)卷(含答案及解析).docx(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 2022年北京市海淀区中考数学模拟真题 (B)卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、的相反数是( )ABCD32、下列命题中,真命题是()A同位
2、角相等B有两条边对应相等的等腰三角形全等C互余的两个角都是锐角D相等的角是对顶角3、火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:火车的速度为30米/秒;火车的长度为120米;火车整体都在隧道内的时间为35秒;隧道长度为1200米其中正确的结论是( )ABCD4、下图中能体现1一定大于2的是()ABCD5、截至2021年12月31日,我国已有11.5亿人完成了新冠疫苗全程接种,数据11.5亿用科学记数法表示为( )A11.5108B1.15108C11.5109D1.151096、下列关于x的方程中,一定是一元二次方程的是()Aa
3、x2bx+c0B2ax(x1)2ax2+x5C(a2+1)x2x+60D(a+1)x2x+a07、已知圆O的半径为3,AB、AC是圆O的两条弦,AB=3,AC=3,则BAC的度数是( )A75或105B15或105C15或75D30或908、已知4个数:,其中正数的个数有( )A1B C3D49、如图,四棱柱的高为9米,底面是边长为6米的正方形,一只蚂蚁从如图的顶点A开始,爬向顶点B那么它爬行的最短路程为() 线 封 密 内 号学级年名姓 线 封 密 外 A10米B12米C15米D20米10、若,则的值是( )AB0C1D2022第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20
4、分)1、要使成为完全平方式,那么b的值是_2、如图,在ABC中,ABC120,AB12,点D在边AC上,点E在边BC上,sinADE,ED5,如果ECD的面积是6,那么BC的长是_3、如图,C是线段AB延长线上一点,D为线段BC上一点,且,E为线段AC上一点,若,则_4、已知一个角等于70,则这个角的补角等于_5、已知二次函数y1x2+bx+c和反比例函数y2在同一个坐标系中的图象如图所示,则不等式x2+bx+c的解集是 _三、解答题(5小题,每小题10分,共计50分)1、如图,中,于D,点E在AD上,且(1)求证:;(2)判断直线BE和AC的位置关系,并说明理由2、规定:A,B,C是数轴上的
5、三个点,当CA=3CB时我们称C为A,B的“三倍距点”,当CB=3CA时,我们称C为B,A的“三倍距点”点A所表示的数为a,点B所表示的数为b且a,b满足(a+3)2+|b5|=0(1) a=_,b=_;(2)若点C在线段AB上,且为A,B的“三倍距点”,则点C所表示的数为_;(3)点M从点A出发,同时点N从点B出发,沿数轴分别以每秒3个单位长度和每秒1个单位长度的速度向右运动,设运动时间为t秒当点B为M,N两点的“三倍距点”时,求t的值3、(1)解方程3(x+1)8x+6; 线 封 密 内 号学级年名姓 线 封 密 外 (2)解方程组4、(综合与实践)现实生活中,人们可以借助光源来测量物体的
6、高度已知榕树CD,FG和灯柱AB如图所示,在灯柱AB上有一盏路灯P,榕树和灯柱的底端在同一水平线上,两棵榕树在路灯下都有影子,只要测量出其中一些数据,则可求出所需要的数据,具体操作步骤如下:根据光源确定榕树在地面上的影子;测量出相关数据,如高度,影长等;利用相似三角形的相关知识,可求出所需要的数据根据上述内容,解答下列问题:(1)已知榕树CD在路灯下的影子为DE,请画出榕树FG在路灯下的影子GH;(2)如图,若榕树CD的高度为3.6米,其离路灯的距离BD为6米,两棵榕树的影长DE,GH均为4米,两棵树之间的距离DG为6米,求榕树FG的高度;(3)无论太阳光还是点光源,其本质与视线问题相同日常生
7、活中我们也可以直接利用视线解决问题如图,建筑物CD高为50米,建筑物MF上有一个广告牌EM,合计总高度EF为70米,两座建筑物之间的直线距离FD为30米一个观测者(身高不计)先站在A处观测,发现能看见广告牌EM的底端M处,观测者沿着直线AF向前走了5米到B处观测,发现刚好看到广告牌EM的顶端E处则广告牌EM的高度为 米5、解方程组: -参考答案-一、单选题1、D【分析】根据只有符号不同的两个数是互为相反数解答即可【详解】解:的相反数是3,故选D【点睛】本题考查了相反数的定义,只有符号不同的两个数是互为相反数,正数的相反数是负数,0的相反数是0,负数的相反数是正数2、C【分析】根据平行线的性质、
8、全等三角形的判定定理、余角的概念、对顶角的概念判断即可【详解】解:A、两直线平行,同位角相等,故本选项说法是假命题;B、有两条边对应相等的等腰三角不一定形全等,故本选项说法是假命题;C、互余的两个角都是锐角,本选项说法是真命题;D、相等的角不一定是对顶角,例如,两直线平行,同位角相等,此时两个同位角不是对顶角,故本选项说法是假命题;故选:C【点睛】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题判断命题的真假关键是要熟悉课本中的性质定理3、D【分析】根据函数的图象即可确定在BC段,所用的时间是5秒,路程是150米,则速度是30
9、米/秒,进而即可确定其它答案【详解】解:在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒故正确;火车的长度是150米,故错误;整个火车都在隧道内的时间是:45-5-5=35秒,故正确;隧道长是:4530-150=1200(米),故正确故选:D【点睛】本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决4、C【分析】由对顶角的性质可判断A,由平行线的性质可判断B,由三角形的外角的性质可判断C,由直角三角形中同角的余角相等可判断D,从而可得答案.【详解】解:A、1和2是对顶角,12故此选项不符合题意;B、如图
10、, 若两线平行,则32,则 若两线不平行,则大小关系不确定,所以1不一定大于2故此选项不符合题意;C、1是三角形的外角,所以12,故此选项符合题意;D、根据同角的余角相等,可得12,故此选项不符合题意故选:C【点睛】本题考查的是对顶角的性质,平行线的性质,直角三角形中两锐角互余,三角形的外角的性质,同角的余角相等,掌握几何基本图形,基本图形的性质是解本题的关键.5、D【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数【详解】解:1
11、1.5亿11500000001.5109故选:D【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值6、C 线 封 密 内 号学级年名姓 线 封 密 外 【分析】根据一元二次方程的定义(含有一个未知数,并且含有未知数的项的最高次数是2的整式方程叫一元二次方程)进行判断即可【详解】解:A当a=0时,ax2+bx+c=0不是一元二次方程,故此选项不符合题意;B2ax(x-1)=2ax2+x-5整理后化为:-2ax-x+5=0,不是一元二次方程,故此选项不符合题意;C(a2+1)x2-x+6=0,是关于x的一元二次
12、方程,故此选项符合题意;D当a=-1时,(a+1)x2-x+a=0不是一元二次方程,故此选项不符合题意故选:C【点睛】本题考查了一元二次方程的定义,解题时要注意两个方面:1、一元二次方程包括三点:是整式方程,只含有一个未知数,所含未知数的项的最高次数是2;2、一元二次方程的一般形式是ax2+bx+c=0(a0)7、B【分析】根据题意画出图形,作出辅助线,由于AC与AB在圆心的同侧还是异侧不能确定,故应分两种情况进行讨论【详解】解:分别作ODAC,OEAB,垂足分别是D、EOEAB,ODAB,AE=AB=,AD=AC=,AOE=45,AOD=30,CAO=90-30=60,BAO=90-45=4
13、5,BAC=45+60=105,同理可求,CAB=60-45=15BAC=15或105,故选:B【点睛】本题考查的是垂径定理及直角三角形的性质,解答此题时进行分类讨论,不要漏解8、C【分析】化简后根据正数的定义判断即可【详解】解:=1是正数,=2是正数,=1.5是正数,=-9是负数,故选C【点睛】本题考查了有理数的乘方、相反数、绝对值的意义,以及正负数的意义,正确化简各数是解答本题的关键9、C【分析】 线 封 密 内 号学级年名姓 线 封 密 外 将立体图形展开,有两种不同的展法,连接AB,利用勾股定理求出AB的长,找出最短的即可【详解】解:如图,(1)AB;(2)AB15,由于15,则蚂蚁爬
14、行的最短路程为15米故选:C【点睛】本题考查了平面展开-最短路径问题,要注意,展开时要根据实际情况将图形安不同形式展开,再计算10、C【分析】先根据非负数的性质求出a和b的值,然后代入所给代数式计算即可【详解】解:,a-2=0,b+1=0,a=2,b=-1,=,故选C【点睛】本题考查了非负数的性质,以及求代数式的值,根据非负数的性质求出a和b的值是解答本题的关键二、填空题1、【分析】根据完全平方式的性质:,可得出答案.【详解】是完全平方式解得故答案为.【点睛】本题考查完全平方式,熟记完全平方式的形式,找出公式中的a和b的关键.2、#【分析】如图,过点E作EFBC于F,过点A作AHCB交CB的延
15、长线于H解直角三角形求出BH,CH即可解决问题【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:如图,过点E作EFBC于F,过点A作AHCB交CB的延长线于HABC120,ABH180ABC60,AB12,H90,BHABcos606,AHABsin606,EFDF,DE5,sinADE ,EF4,DF3,SCDE6, CDEF6,CD3,CFCD+DF6,tanC, ,CH9,BCCHBH96故答案为:【点睛】本题主要考查了解直角三角形,根据题意构造合适的直角三角形是解题的关键3、3【分析】设BD=a,AE=b,则CD=2a,CE=2b,根据AB=AE+BE=AE+DE-BD代入计
16、算即可【详解】设BD=a,AE=b,CD=2a,CE=2b,DE=CE-CD=2b-2a=2即b-a=1,AB=AE+BE=AE+DE-BD=2+b-a=2+1=3,故答案为:3【点睛】本题考查了线段的和与差,正确用线段的和差表示线段是解题的关键4、度【分析】根据补角的定义:若两角相加等于,则两角互补,求出答案即可【详解】一个角等于70, 线 封 密 内 号学级年名姓 线 封 密 外 这个角的补角为:故答案为:【点睛】本题考查补角的定义,掌握两角互补,则两角相加为是解题的关键5、或【分析】根据,即是二次函数图象在反比例函数下方,再结合图象可直接求出其解集【详解】根据题意要使,即二次函数图象在反
17、比例函数下方即可根据图象可知当或时二次函数图象在反比例函数下方,的解集是或故答案为:或【点睛】本题考查反比例函数和二次函数综合,掌握函数图像的交点坐标与不等式的关系,是解题的关键三、解答题1、(1)见详解;(2)BEAC;理由见详解【分析】(1)先得到AD=BD,然后利用HL即可证明;(2)延长BE,交AC于点F,由(1)可知,然后得到,即可得到结论成立(1)解:于D,(HL);(2)解:BEAC;理由如下:延长BE,交AC于点F,如图:由(1)可知,BEAC; 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】本题考查了全等三角形的判定和性质,余角的性质,等腰三角形的判定和性质,解题的关
18、键是掌握所学的知识,正确的找出全等的条件2、(1)-3,5(2)3(3)当t为或t=3或秒时,点B为M,N两点的“三倍距点”【分析】(1)根据非负数的性质,即可求得a,b的值;(2)根据“三倍距点”的定义即可求解;(3)分点B为M,N的“三倍距点”和点B为N,M的“三倍距点”两种情况讨论即可求解(1)解:(a+3)2+|b5|=0,a+3=0,b5=0,a=-3,b=5,故答案为:-3,5;(2)解:点A所表示的数为-3,点B所表示的数为5,AB=5-(-3)=8,点C为A,B的“三倍距点”,点C在线段AB上,CA=3CB,且CA+CB=AB=8,CB=2,点C所表示的数为5-2=3,故答案为
19、:3;(3)解:根据题意知:点M所表示的数为3t-3,点N所表示的数为t+5,BM=,BN=,(t0),当点B为M,N的“三倍距点”时,即BM=3BN,或,解得:,而方程,无解;当点B为N,M的“三倍距点” 时,即3BM=BN,或,解得:或t=3;综上,当t为或t=3或秒时,点B为M,N两点的“三倍距点”【点睛】本题考查了非负数的性质,一元一次方程的应用、数轴以及绝对值,熟练掌握“三倍距点”的定义是解题的关键3、(1)x=;(2) 线 封 密 内 号学级年名姓 线 封 密 外 【分析】(1)去括号,移项,合并同类项,系数化成1即可;(2)2+得出13x=26,求出x,把x=2代入求出y即可【详
20、解】解:(1)3(x+1)=8x+6,去括号,得3x+3=8x+6,移项,得3x-8x=6-3,合并同类项,得-5x=3,系数化成1,得x=;(2),2+,得13x=26,解得:x=2,把x=2代入,得10+y=7,解得:y=-3,所以方程组的解是【点睛】本题考查了解二元一次方程组和解一元一次方程,能正确根据等式的性质进行变形是解(1)的关键,能把二元一次方程组转化成一元一次方程是解(2)的关键4、(1)见解析(2)(3)【分析】(1)根据题意画出图形;(2)证明ECDEPB,根据相似三角形的性质列出比例式,把已知数据代入计算即可;(3)根据BCDBEF求出BD,再根据ACDAMF求出MF,进
21、而求出EM【小题1】解:图中GH即为所求;【小题2】CDPB,ECDEPB,即,解得:PB=9,FGPB,HFGHPB,即, 线 封 密 内 号学级年名姓 线 封 密 外 解得:FG=,答:榕树FG的高度为米;【小题3】CDEF,BCDBEF,即,解得:BD=75,CDEF,ACDAMF,即,解得:MF=,EM=EF-MF=70-=(米),故答案为:【点睛】本题考查的相似三角形的判定和性质的应用,掌握相似三角形的判定定理和性质定理是解题的关键5、【分析】由,得:,由,得:,再由由,得:,再将代入,可得,然后将,代入,可得,即可求解【详解】解: ,由,得:,由,得:,由,得:,解得:,将代入,得:,解得:,将,代入,得: ,解得: 方程组的解为:【点睛】本题主要考查了解三元一次方程组,熟练掌握三元一次方程组的解法是解题的关键