《北师大版七年级数学下册第六章概率初步章节训练试题(含详细解析).docx》由会员分享,可在线阅读,更多相关《北师大版七年级数学下册第六章概率初步章节训练试题(含详细解析).docx(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版七年级数学下册第六章概率初步章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为a,b,c,则a,b,c正好是
2、直角三角形三边长的概率是( ).ABCD2、小明的妈妈让他在无法看到袋子里糖果的情形下从中任抽一颗袋子里有三种颜色的糖果,它们的大小、形状、质量等都相同如果袋中所有糖果数量统计如图所示,那么小明抽到红色糖果的可能性为( )ABCD3、下列语句中,表示不可能事件的是( )A绳锯木断B杀鸡取卵C钻木取火D水中捞月4、下列事件是必然事件的是()A水中捞月B抛掷一枚质地均匀的硬币,正面向上C打开电视,正在播广告D如果a、b都是实数,那么abba5、下列说法正确的是()A“明天下雨的概率为99%”,则明天一定会下雨B“367人中至少有2人生日相同”是随机事件C抛掷10次硬币,7次正面朝上,则抛掷硬币正面
3、朝上的概率为0.7D“抛掷一枚均匀的骰子,朝上的面点数为偶数”是随机事件6、下列事件,你认为是必然事件的是( )A打开电视机,正在播广告B今天星期二,明天星期三C今年的正月初一,天气一定是晴天D一个袋子里装有红球1个、白球9个,每个球除颜色外都相同,任意摸出一个球是白色的7、在不透明口袋内装有除颜色外完全相同的5个小球,其中红球2个,白球3个搅拌均匀后,随机抽取一个小球,是红球的概率为( )ABCD8、下列说法不正确的是()A不可能事件发生的概率是0B概率很小的事件不可能发生C必然事件发生的概率是1D随机事件发生的概率介于0和1之间9、如图,有5张形状、大小、材质均相同的卡片,正面分别印着北京
4、2022年冬奥会的越野滑雪、速度滑冰、花样滑冰、高山滑雪、单板滑雪大跳台的体育图标,背面完全相同现将这5张卡片洗匀并正面向下放在桌上,从中随机抽取一张,抽出的卡片正面恰好是“滑冰”项目的图案的可能性是( )ABCD10、下列事件中,是必然事件的是()A如果a2b2,那么abB车辆随机到达一个路口,遇到红灯C2021年有366天D13个人中至少有两个人生肖相同第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、有背面完全相同,正面分别画有等腰三角形、平行四边形、矩形、菱形、等腰梯形的卡片5张,现正面朝下放置在桌面上,将其混合后,并从中随机抽取一张,则抽中正面的图形一定是轴对称
5、图形的卡片的概率为 _2、设有12只型号相同的杯子,其中一等品7只,二等品2只,三等品3只则从中任意取一只,是二等品的概率等于_3、不透明的袋子里装有除颜色外完全相同的m个白色乒乓球和15个黄色乒乓球,若随机的从袋子中摸出一个乒乓球是白色的概率为,则袋子中总共有_个乒乓球4、某商场举办抽奖活动,每张奖券获奖的可能性相同,以10000奖券为一个开奖单位,设特等奖10个,一等奖100个,二等奖500个,则1张奖券中奖的概率是_5、在一个不透明的口袋中装有8个红球,若干个白球,这些球除颜色不同外其它都相同,若从中随机摸出一个球,它是红球的概率为,则白球的个数为_三、解答题(5小题,每小题10分,共计
6、50分)1、在不透明的袋子里装有10个乒乓球,其中有2个是黄色的,3个是红色的,其余全是白色的,先拿出每种颜色的乒乓球各一个(不放回),再任意拿出一个乒乓球是红色的概率是多少?2、某生物制剂公司以箱养的方式培育一批新品种菌苗,每箱有40株菌苗若某箱菌苗失活率大于10%,则需对该箱菌苗喷洒营养剂某日工作人员随机抽检20箱菌苗,结果如表:箱数625424每箱中失活菌苗株数012356(1)抽检的20箱平均每箱有多少株失活菌苗?(2)该日在这批新品种菌苗中随机抽取一箱,记事件A为:该箱需要喷洒营养剂请估计事件A的概率3、一个不透明的口袋中放着若干个红球和黑球,这两种球除了颜色之外没有其他任何区别,袋
7、中的球已经搅匀,闭眼从口袋中摸出一个球,经过很多次实验发现摸到红球的频率逐渐稳定在(1)估计摸到黑球的概率是 ;(2)如果袋中原有红球12个,又放入n个黑球,再经过很多次实验发现摸到黑球的频率逐渐稳定在,求n的值4、目前我国已建成全球最大的5G网络,它给我们的生活带来了便利据统计,某市居民使用甲、乙、丙三家运营商提供的5G网络已突破80万户为了解用户使用的满意度,有关部门从中随机抽取100人次作为样本,整理后得到下表数据:满意度(得分)中青年用户其他用户甲运营商乙运营商丙运营商甲运营商乙运营商丙运营商满意(10分)151524667一般(5分)443223不满意(0分)212121(1)在样本
8、中任取1个,求这个人恰好是中青年用户的概率;(2)如果小王要使用运营商提供的5G网络,以满意度的平均值作为决策依据,你会建议他选择哪一家运营商?5、如图,小颖认为该转盘上共有三种不同的颜色,所以自由转动这个转盘,指针停在红色、黄色或蓝色区域的概率都是 ,你认为小颖的说法对吗?请说明理由-参考答案-一、单选题1、C【分析】本题是一个由三步才能完成的事件,共有666=216种结果,a,b,c正好是直角三角形三边长,则它们应该是一组勾股数,在这216组数中,找出勾股数的情况,因而得出是直角三角形三边长的概率即可【详解】本题是一个由三步才能完成的事件,共有666=216种结果,每种结果出现的机会相同,
9、a,b,c正好是直角三角形三边长,则它们应该是一组勾股数,在这216组数中,是勾股数的有3,4,5;3,5,4;4,3,5;4,5,3;5,3,4;5,4,3共6种情况,因而a,b,c正好是直角三角形三边长的概率是故选:C【点睛】本题主要考查了等可能事件的概率,属于基础题,用到的知识点为:概率等于所求情况数与总情况数之比;3,4,5为三角形三边的三角形是直角三角形2、D【分析】先利用条形统计图得到绿色糖果的个数为2,红色糖果的个数为5,黄色糖果的个数为8,然后根据概率公式求解【详解】解:根据统计图得绿色糖果的个数为2,红色糖果的个数为5,黄色糖果的个数为8,所以小明抽到红色糖果的概率故选:D【
10、点睛】本题考查了概率公式:随机事件A的概率P(A)事件A可能出现的结果数除以所有可能出现的结果数也考查了条形统计图3、D【分析】根据不可能事件的定义:在一定条件下,一定不会发生的事件,进行逐一判断即可【详解】解:不可能事件是在一定条件下,一定不会发生,而A中的绳锯木断,B中的杀鸡取卵,C中的钻木取火都是可以发生,只有D水中捞月是不可能发生的,只有D选项是不可能事件,故选D【点睛】本题主要考查了不可能事件,解题的关键在于能够熟知不可能事件的定义4、D【分析】根据事先能肯定它一定会发生的事件称为必然事件依次判断即可【详解】解:A. 水中捞月不可能发生,是不可能事件,不符合题意;B. 抛掷一枚质地均
11、匀的硬币,正面向上,是随机事件,不符合题意;C. 打开电视,正在播广告,是随机事件,不符合题意;D. 如果a、b都是实数,那么abba,是必然事件,符合题意;故选:D【点睛】本题考查事件发生的可能性大小事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件5、D【分析】根据概率、随机事件和必然事件的定义逐项判断即可得【详解】解:A、“明天下雨的概率为99%”,则明天不一定会下雨,原说法错误;B、“367人中至少有2人生日相同”是必然事件,则原说法错误;C、抛掷硬币要么正面朝上,要么正面朝下,则抛掷硬币正面朝
12、上的概率为,则原说法错误;D、“抛掷一枚均匀的骰子,朝上的面点数为偶数”是随机事件,说法正确;故选:D【点睛】本题考查了概率、随机事件和必然事件,掌握理解各概念是解题关键6、B【分析】必然事件就是一定发生的事件,依据定义即可作出判断【详解】解:A、是随机事件,故此选项不符合题意;B、是必然事件,故此选项符合题意;C、是随机事件,故此选项不符合题意;D、是随机事件,故此选项不符合题意;故选:B【点睛】解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事
13、件7、A【分析】用红球的个数除以所有球的个数即可求得抽到红球的概率【详解】解:共有5个球,其中红球有2个,P(摸到红球)=,故选:A【点睛】此题主要考查概率的意义及求法用到的知识点为:概率=所求情况数与总情况数之比8、B【分析】根据概率的意义分别判断后即可确定正确的选项【详解】解:A. 不可能事件发生的概率是0,故该选项正确,不符合题意;B. 概率很小的事件也可能发生,故该选项不正确,符合题意;C. 必然事件发生的概率是1,故该选项正确,不符合题意;D. 随机事件发生的概率介于0和1之间,故该选项正确,符不合题意;故选B【点睛】本题考查概率的意义,理解概率的意义反映的只是这一事件发生的可能性的
14、大小:必然发生的事件发生的概率为1,随机事件发生的概率大于0且小于1,不可能事件发生的概率为09、B【分析】先找出滑冰项目图案的张数,再根据概率公式即可得出答案【详解】解:有5张形状、大小、质地均相同的卡片,滑冰项目图案的有速度滑冰和花样滑冰2张,从中随机抽取一张,抽出的卡片正面恰好是滑冰项目图案的概率是;故选:B【点睛】本题考查了概率的知识用到的知识点为:概率=所求情况数与总情况数之比10、D【分析】在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫必然发生的事件,简称必然事件;利用概念逐一分析即可得到答案.【详解】解:如果a2b2,那么,原说法是随机事件,故A不符合
15、题意;车辆随机到达一个路口,遇到红灯,是随机事件,故B不符合题意;2021年是平年,有365天,原说法是不可能事件,故C不符合题意;13个人中至少有两个人生肖相同,是必然事件,故D符合题意,故选:D【点睛】本题考查的是必然事件的概念,不可能事件,随机事件的含义,掌握“必然事件的概念”是解本题的关键.二、填空题1、【分析】卡片中,轴对称图形有等腰三角形、矩形、菱形、等腰梯形,再根据概率公式=满足条件的样本个数总体的样本个数,可求出最终结果【详解】解:卡片中,轴对称图形有等腰三角形、矩形、菱形、等腰梯形,根据概率公式,(轴对称图形)故答案为:【点睛】本题主要考查概率问题,属于基础题,掌握轴对称图形
16、的性质以及概率公式是解题关键2、【解析】3、18【分析】由从袋子中摸出一个乒乓球是白球的概率计算出从袋子中摸出一个乒乓球是黄色的概率,再根据白球的个数以及从袋子中摸出一个乒乓球是白球的概率即可求出乒乓球的总个数【详解】解:从袋子中摸出一个乒乓球是白色的概率为,从袋子中摸出一个乒乓球是黄色的概率为,袋子中乒乓球的总数为:(个),故答案为:18【点睛】本题主要考查由概率求数量,解题关键是熟练掌握概率公式以及公式的变形4、【分析】首先确定出10000奖券中能中奖的所有数量,然后根据概率公式求解即可【详解】解:由题意,10000奖券中,中奖数量为10+100+500=610张,根据概率公式可得:1张奖
17、券中奖的概率,故答案为:【点睛】本题考查概率公式,明确题意,分别确定出概率公式中所需的量,熟练使用概率公式是解题关键是解题关键5、12【分析】设该盒中白球的个数为个,根据意得,解此方程即可求得答案【详解】解:设该盒中白球的个数为个,根据题意得:,解得:,经检验:是分式方程的解,所以该盒中白球的个数为12个,故答案为:12【点睛】本题考查了概率公式的应用,解题的关键是掌握:概率所求情况数与总情况数之比三、解答题1、【分析】根据剩下7个小球拿一个的可能性有7种,其中红球的可能性是2种即可求解【详解】解:先拿出每种颜色的乒乓球各一个(不放回),则还剩下7个小球,其中红色的球2个,剩下7个小球拿一个的
18、可能性有7种,其中红球的可能性是2种,再任意拿出一个乒乓球是红色的概率是 【点睛】本题主要考查了概率的计算,用到的知识点为:概率所求情况数与总情况数之比2、(1)抽检的20箱平均每箱有2.9株失活菌苗;(2)事件A的概率为【分析】(1)根据题意及表格可直接进行求解;(2)由题意知当每箱中失活菌苗株数为4010=4株的时候需喷洒营养剂,然后根据表格及概率公式可直接进行求解【详解】解:(1)由表格得:(株);答:抽检的20箱平均每箱有2.9株失活菌苗;(2)由题意得:4010=4株,当每箱中失活菌苗株数为4株时,则需喷洒营养剂,即事件A的概率为【点睛】本题主要考查概率,熟练掌握概率的求解是解题的关
19、键3、(1);(2)n6【分析】(1)取出黑球的概率1取出红球的概率;(2)首先根据红球的个数和摸出红球的概率求得黑球的个数,然后根据概率公式列式求解即可【详解】解:(1)P(取出黑球)1P(取出红球)1;故答案为:;(2)设袋子中原有黑球x个,根据题意得:,解得:x18,经检验x18是原方程的根,所以黑球有18个,又放入了n个黑球,根据题意得:,解得:n6经检验:符合题意【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势,估计概率,这个固定的近似值就是这个事件的概率4、(1)这个人恰好
20、是中青年用户的概率为0.7;(2)选择丙运营商【分析】(1)计算出抽查的100人中,中青年用户的人数即可;(2)计算出各个运营商的满意度的平均值,比较得出答案【详解】(1)抽查的100人中,中青年用户有15+4+2+15+4+1+24+3+270(人),所以在样本中任取1个,恰好是中青年用户的概率为0.7;(2)甲运营商的满意度平均值为:(分),乙运营商的满意度平均值为:(分),丙运营商的满意度平均值为:(分),因此建议选择丙运营商,答:选择丙运营商【点睛】本题考查了概率、平均数,理解概率、算术平均数的意义,掌握概率和算术平均数的计算方法是正确解答的关键5、不对,见解析【分析】由红色部分扇形的圆心角为 黄色部分与蓝色部分扇形的圆心角分别为 从而可得它们占整个圆的从而可得答案.【详解】解:不对,红色面积最大,且红色面积是黄色面积的倍,也是蓝色面积的倍,指针停在红色、黄色或蓝色区域的概率分别是【点睛】本题考查的是几何概率,弄懂指针停在红色区域的概率等于是解题的关键.