《中考强化训练最新中考数学历年真题练习-(B)卷(含答案及详解).docx》由会员分享,可在线阅读,更多相关《中考强化训练最新中考数学历年真题练习-(B)卷(含答案及详解).docx(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 最新中考数学历年真题练习 (B)卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列运算中,正确的是( )ABCD2、如图,已知是的直径,过点的弦平行于半
2、径,若的度数是,则的度数是( )ABCD3、若是最小的自然数, 是最小的正整数,是绝对值最小的有理数,则的值为( ) A-1B1C0D24、多项式与多项式相加后,不含二次项,则常数m的值是( )A2BCD5、下列说法正确的是( )A带正号的数是正数,带负号的数是负数.B一个数的相反数,不是正数,就是负数.C倒数等于本身的数有2个.D零除以任何数等于零.6、下列各数中,是无理数的是( )ABCD7、某种速冻水饺的储藏温度是,四个冷藏室的温度如下,不适合储藏此种水饺是( )ABCD8、已知空气的单位体积质量为克/厘米3,将用小数表示为( )ABCD9、直线上两点的坐标分别是,则这条直线所对应的一次
3、函数的解析式为( )ABCD10、把分式化简的正确结果为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、比较大小(填“”或“”): _. 线 封 密 内 号学级年名姓 线 封 密 外 2、如图,半圆O的直径AE4,点B,C,D均在半圆上若ABBC,CDDE,连接OB,OD,则图中阴影部分的面积为_.3、妈妈用10000元钱为小明存了6年期的教育储蓄,6年后能取得11728元,这种储蓄的年利率为_%4、在下列实数(每两个3之间依次多一个“1”),中,其中无理数是_5、的最简公分母是_三、解答题(5小题,每小题10分,共计50分)1、如图,将边长为4的正方形纸
4、片ABCD折叠,使点A落在边CD上的点M处(不与点C、D重合),连接AM,折痕EF分别交AD、BC、AM于点E、F、H,边AB折叠后交边BC于点G(1)求证:EDMMCG;(2)若DMCD,求CG的长;(3)若点M是边CD上的动点,四边形CDEF的面积S是否存在最值?若存在,求出这个最值;若不存在,说明理由2、某商家在“618购物节”活动中将某种服装按成本价加价40%作为标价,又以8折(即按标价的80%)优惠卖出,结果每件服装仍可获利15元,这件服装的实际售价是多少元?3、平安路上,多“盔”有你,在“交通安全宣传月”期间,某商店销售一批头盔,进价为每顶40元,售价为每顶68元,平均每周可售出1
5、00顶商店计划将头盔降价销售,每顶售价不高于58元,经调查发现:每降价2元,平均每周可多售出40顶(1)若该商店希望平均每周获利4000元,则每顶头盔应降价多少?(2)商店降价销售后,决定每销售1顶头盔就向某慈善机构捐赠m元(m为整数,且),帮助做“交通安全”宣传捐赠后发现,该商店每周销售这种商品的利润仍随售价的增大而增大,求m的值4、如图,是数轴的原点,、是数轴上的两个点,点对应的数是,点对应的数是,是线段上一点,满足(1)求点对应的数;(2)动点从点出发,以每秒个单位长度的速度沿数轴向右匀速运动,当点到达点后停留秒钟,然后继续按原速沿数轴向右匀速运动到点后停止在点从点出发的同时,动点从点出
6、发,以每秒个单位长度的速度沿数轴匀速向左运动,一直运动到点后停止设点的运动时间为秒当时,求的值;在点,出发的同时,点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,当点与点相遇后,点立即掉头按原速沿数轴向右匀速运动,当点与点相遇后,点又立即掉头按原速沿数轴向左匀速运动到点后停止当时,请直接写出的值5、定义:当时,其对应的函数值为,若成立,则称a为函数y的不动点例如:函数,当时,因为成立,所以2为函数y的不动点对于函数,(1)当时,分别判断1和0是否为该函数的不动点,并说明理由;(2)若函数有且只有一个不动点,求此时t的值;(3)将函数图像向下平移个单位长度,时,判断平移后函数不动点的个数
7、线 封 密 内 号学级年名姓 线 封 密 外 -参考答案-一、单选题1、A【分析】根据 “幂的乘方”“同底数幂乘法”“合并同类项”“积的乘方”的运算法则,即可选出正确选项.【详解】A选项,幂的乘方,底数不变,指数相乘,所以A选项正确.B选项,同底数幂相乘,底数不变,指数相加,所以B选项错误.C选项,合并同类项,字母和字母指数不变,系数相加,所以C选项错误.D选项,积的乘方,积中每一个因式分别乘方,所以D选项错误.故选A【点睛】整式计算基础题型,掌握运算法则,熟练运用.2、A【分析】根据平行线的性质和圆周角定理计算即可;【详解】,故选A【点睛】本题主要考查了圆周角定理、平行线的性质,准确计算是解
8、题的关键3、C【分析】由a是最小的自然数,b是最小的正整数,c是绝对值最小的数可分别求出a、b、c的值,可求出a-bc的值【详解】解:因为a是最小的自然数,b是最小的正整数,c是绝对值最小的有理数,所以a=0,b=1,c=0,所以a-bc=0-10=0,故选:C【点睛】本题考查有理数的有关概念,注意:最小的自然数是0;最小的正整数是1,绝对值最小的有理数是04、B【分析】合并同类项后使得二次项系数为零即可;【详解】解析:,当这个多项式不含二次项时,有,解得故选B 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】本题主要考查了合并同类项的应用,准确计算是解题的关键5、C【分析】利用有理数的
9、定义判断即可得到结果【详解】解:A、带正号的数不一定为正数,例如+(-2);带负号的数不一定为负数,例如-(-2),故错误;B、一个数的相反数,不是正数,就是负数,例如0的相反数是0,故错误;C、倒数等于本身的数有2个,是1和-1,正确;D、零除以任何数(0除外)等于零,故错误;故选C【点睛】本题考查有理数的除法,以及正负数、倒数以及相反数,掌握它们的性质是解题的关键6、C【分析】根据无理数的概念:无限不循环小数,由此可进行排除选项【详解】解:A是分数,是有理数,选项不符合题意;B,是整数,是有理数,选项不符合题意;C是无理数,选项符合题意;D是整数,是有理数,选项不符合题意故选C【点睛】本题
10、主要考查无理数的概念,熟练掌握无理数的概念是解题的关键7、B【分析】根据有理数的加减运算,可得温度范围,根据温度范围,可得答案【详解】解:-18-2=-20,-18+2=-16,温度范围:-20至-16,故选:B【点睛】本题考查了正数和负数,有理数的加法运算是解题关键,先算出适合温度的范围,再选出不适合的温度8、B【分析】指数是-3,说明数字1前面有3个0【详解】指数是-3,说明数字1前面有3个0,故选B【点睛】在科学记数法中,n等于原数中第一个非零数字前面所有零的个数(包括小数点前面的零)9、A【分析】利用待定系数法求函数解析式 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:直线
11、y=kx+b经过点P(-20,5),Q(10,20), ,解得,所以,直线解析式为故选A【点睛】本题主要考查待定系数法求函数解析式,是中考的热点之一,需要熟练掌握解题的关键是掌握待定系数法10、A【分析】先确定最简公分母是(x2)(x2),然后通分化简【详解】;故选A【点睛】分式的加减运算中,异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减二、填空题1、【分析】根据两个负数比较大小,其绝对值大的反而小比较即可【详解】解: , , , 故答案为:【点睛】本题考查有理数的大小比较,能熟记有理数的大小比较的内容是解此题的关键,注意:正数都大于0,负数都小于0,正数大于一切负数,两个
12、负数比较大小,其绝对值大的反而小2、【分析】根据题意可知,图中阴影部分的面积等于扇形BOD的面积,根据扇形面积公式即可求解【详解】如图,连接CO,AB=BC,CD=DE,BOC+COD=AOB+DOE90,AE=4,AO=2,S阴影 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】本题考查了扇形的面积计算及圆心角、弧之间的关系解答本题的关键是得出阴影部分的面积等于扇形BOD的面积3、2.88【分析】先设出教育储蓄的年利率为x,然后根据6年后总共能得本利和11728元,列方程求解【详解】解析:设年利率为,则由题意得,解得故答案为:【点睛】本题考查了一元一次方程的应用,关键在于找出题目中的等
13、量关系,根据等量关系列出方程解答4、(每两个3之间依次多一个“1”),【分析】无理数:即无限不循环小数,据此回答即可【详解】解:,无理数有:(每两个3之间依次多一个“1”),故答案为:(每两个3之间依次多一个“1”),【点睛】此题考查了无理数的概念,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数如,(每两个之间一次多个)等形式5、【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母【详解】解:的分母分别是xy、4x3、6xyz,故最简公分母是故答案为【点睛】
14、本题考查了最简公分母的定义及求法通常取各分母系数的最小公倍数与字母因式的最高次幂的积作为公分母,这样的公分母叫做最简公分母一般方法:如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂三、解答题1、(1)见解析(2)2(3)存在,10【分析】 线 封 密 内 号学级年名姓 线 封 密 外 (1)由正方形的性质得,故,由折叠的性质得,故,推出,故可证;(2)由,得,设,则,由勾股定理即可求出的值,即可求出,由相
15、似三角形的性质即可得出的长;(3)过点作于,根据证明,由全等三角形的性质得,设,由勾股定理求出、关系,由化为二次函数即可求出最值(1)四边形是正方形,正方形沿Z折叠,;(2)正方形的边长为4,设,则,由勾股定理得:,解得:,即,解得:;(3)如图,过点作于,四边形是矩形,由折叠的性质可得:, 线 封 密 内 号学级年名姓 线 封 密 外 设,即,当时,有最大值为10【点睛】本题考查几何综合题,主要涉及到折叠的性质,正方形的性质,相似三角形性的判定与性质,全等三角形的判定与性质以及二次函数最值问题,属于中考压轴题,掌握相关知识点间的应用是解题的关键2、140元【分析】设衣服的成本价为x元,根据售
16、价成本价利润列出方程求解即可【详解】解:设这件服装的成本价为x元,根据题意列方程得:x(140%)80%x15,解得x125,经检验x125是方程的解,实际售价为:125(140%)80%140(元),答:这件服装的实际售价是140元【点睛】本题主要考查一元一次方程的知识,根据售价成本价利润列出方程是解题的关键3、(1)降价20元(2)或4或5【分析】(1)设每顶头盔应降价x元,根据题意列出方程求解即可;(2)设每周扣除捐赠后可获得利润为w元,每顶头盔售价a元,根据题意列出函数求解即可;(1)解:设每顶头盔应降价x元根据题意,得解得当时,;当时,;每顶售价不高于58元,每顶头盔应降价20元(2
17、)设每周扣除捐赠后可获得利润为w元,每顶头盔售价a元,根据题意,得 线 封 密 内 号学级年名姓 线 封 密 外 抛物线对称轴为直线,开口向下,当时,利润仍随售价的增大而增大,解得,为整数,或4或5【点睛】本题主要考查了二次函数的应用,结合一元二次方程的求解是解题的关键4、(1);(2),;或或5【分析】(1)设点C对应的数为c,先求出AC=c-(-1)=c+1,BC=8-c,根据,变形,即,解方程即可;(2)点M、N在相遇前,先求出点M表示的数:-1+2t,点N表示的数为:8-t,根据,列方程,点M、N相遇后,求出点M过点C,点M表示的数为-1+2(t-2)=-5+2t,根据,列方程,解方程
18、即可;点P与点M相遇之前,MP小于2PN,点P与点M相遇后,点M未到点C,先求点P与点M首次相遇AM+CP=5,即2t+3t=5,解得t=1,确定点P与M,N位置,当时,列方程,当点P与点N相遇时,3(t-1)+t-1=7-1解得,此时点M在C位置,点N、P在8-t=8-2.5=5.5位置,点P掉头向C运动,点M在点C位置停止不等,根据当时,列方程5.5-3(t-2.5)-4=25.5-(t-2.5)-5.5-3(t-2.5),点P与点M再次相遇时,解得,点N与点M相遇时,8-t=4,解得,当点P到点A之后,当时,列方程,解方程即可(1)解:设点C对应的数为c,AC=c-(-1)=c+1,BC
19、=8-c,即,解得;(2)解:点M、N在相遇前,点M表示的数:-1+2t,点N表示的数为:8-t,解得,点M、N相遇后,点M过点C,点M表示的数为-1+2(t-2)=-5+2t, 线 封 密 内 号学级年名姓 线 封 密 外 ,解得,MN=4时,或;点P与点M相遇之前,MP小于2PN,点P与点M相遇后,点M未到点C,点P与点M首次相遇AM+CP=5,即2t+3t=5,解得t=1,点M与点P在1位置,点N在7位置,点P掉头,PM=3(t-1)-2(t-1),PN=8-t-1-3 (t-1),当时,,解得,当点P与点N相遇时,3(t-1)+t-1=7-1,解得,此时点M在C位置,点N、P在8-t=
20、8-2.5=5.5位置,点P掉头向C运动,点M在点C位置停止不等,当时,5.5-3(t-2.5)-4=25.5-(t-2.5)-5.5-3(t-2.5),解得;点P与点M再次相遇时,解得,点N与点M相遇时,8-t=4,解得,当点P到点A之后,当时,PM=2(t-2)-1-(-1)=2t-2,PN=8-t-(-1)=9-t,即,解得;综合得当时, 的值为或或5【点睛】本题考查数轴上动点问题,两点间的距离,列代数式,相遇与追及问题,列方程,分类考虑动点的位置,根据等量关系列方程是解题关键5、(1)为函数y的不动点,不为函数y的不动点(2)(3)当时,平移后函数不动点的个数为1个;当时,平移后函数不
21、动点的个数为2个;当时,平移后函数不动点的个数为0个 线 封 密 内 号学级年名姓 线 封 密 外 【分析】(1)读懂不动点的定义,算出进行判断即可;(2)根据不动点的定义可知,判断函数有几个不动点可以转化为与的交点的个数,联立,消去得:,根据根的判别式进行求解;(3)将函数图像向下平移个单位长度,得,联立,消去得:,利用跟的判别式对方程的根进行分论讨论,来判断不动点的个数,注意的取值范围(1)解:当时,成立,所以为函数y的不动点,成立,所以不为函数y的不动点,为函数y的不动点,不为函数y的不动点;(2)解:根据不动点的定义可知,判断函数有几个不动点可以转化为与的交点的个数,联立,消去得:,整
22、理得到:,要使函数有且只有一个不动点,则方程只有几个实数根,则,即,解得:,此时;(3)解:将函数图像向下平移个单位长度,得,联立,消去得:,整理得到:,则,令,则,解得:, 线 封 密 内 号学级年名姓 线 封 密 外 且,不符合题意,即时,平移后函数不动点的个数为1个;当时,开口向上,则不等式的解集为:,当时,平移后函数不动点的个数为2个;当时,开口向上,则不等式且的解集为:,当时,平移后函数不动点的个数为0个;综上:当时,平移后函数不动点的个数为1个;当时,平移后函数不动点的个数为2个;当时,平移后函数不动点的个数为0个【点睛】本题考查了二次函数及一次函数的交点问题、新定义问题、一元二次方程的根的判别式、不等式的求解,解题的关键是理解不动点的概念,结合一元二次方程根的判别式进行分论讨论求解