《2022年精品解析北师大版七年级数学下册第五章生活中的轴对称定向训练练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《2022年精品解析北师大版七年级数学下册第五章生活中的轴对称定向训练练习题(无超纲).docx(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、七年级数学下册第五章生活中的轴对称定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列四个标志中,是轴对称图形的是( )ABCD2、如图,直线、相交于点,为这两条直线外一点,连接点关于直线、的对称
2、点分别是点、若,则点、之间的距离可能是( )ABCD3、下列图案是轴对称图形的是()ABCD4、如图所示,把一个正方形三次对折后沿虚线剪下,则所得图形是( )ABCD5、下列四个图形分别是节能、节水、绿色食品和低碳标志,其中轴对称图形是( )ABCD6、下面四个图形中,是轴对称图形的是()ABCD7、如图把一张长方形的纸按如图那样折叠后,B、D两点分别落在了B、D点处,若AOB=6128, 则BOG的度数为( )A596B5916C574D57448、下面所给的银行标志图中是轴对称图形的是( )ABCD9、如图,四边形ABCD是轴对称图形,直线AC是它的对称轴,若BAC85,B25,则BCD的
3、大小为()A150B140C130D12010、在一些美术字中,有的汉字是轴对称图形下面4个汉字中,可以看作是轴对称图形的是()A吉B祥C如D意第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在中,将其折叠,是点落在边上的点,折痕为(1)的度数为_(2)的度数为_2、如图,AOB内一点P,P1、P2分别是点P关于OA、OB的对称点,P1P2交OA于M,交OB于N,若P1P25cm,则PMN的周长是_3、如图,点D、E分别在ABC的AB、AC边上,沿DE将ADE翻折,点A的对应点为点,EC=,DB=,且,则A等于_(用含、表示)4、如图,在中,点、分别为边、上的点,
4、连接,将沿翻折得到,使若,则的大小为_5、如图,三角形纸片中,沿过点的直线折叠这个三角形,使顶点落在边上的点处,折痕为,则的周长等于_三、解答题(5小题,每小题10分,共计50分)1、(1)已知:如图(甲),等腰三角形的一个内角为锐角,腰为a,求作这个等腰三角形;(2)在(1)中,把锐角变成钝角,其他条件不变,求作这个等腰三角形2、如图,点A、B、C都在方格纸的格点上,方格纸中每个小正方形的边长均为1(1)画出ABC关于直线l对称的DEF;(2)结合所画图形,在直线l上画出点P,使PD+PE的长度最小3、如图是三个55的正方形网格,请你用三种不同的方法分别把每幅图中的一个白色小正方形涂上阴影,
5、使每幅图中的阴影部分成为一个轴对称图形4、如图所示的方格纸中,每个小方格的边长都是1,点A(4,1)、B(3,3)、C(1,2)(1)作ABC关于y轴对称的ABC;(2)在x轴上找出点P,使PA+PC最小,在图中描出满足条件的P点(保留作图痕迹),并直接写出P点的坐标5、如图,在数轴上A点表示数a,B点表示数b,C点表示数c,已知数b是最小的正整数,且a、c满足(1)a=_,b=_,c=_;(2)若将数轴折叠,使得点A与点C重合,则点B与数_表示的点重合;(3)在(1)的条件下,数轴上的A,B,M表示的数为a,b,y,是否存在点M,使得点M到点A,点B的距离之和为6?若存在,请求出y的值;若不
6、存在,请说明理由(4)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,求AB、AC、BC的长(用含t的式子表示)-参考答案-一、单选题1、D【分析】利用轴对称图形的定义进行解答即可【详解】解:A、不是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项不符合题意;C、不是轴对称图形,故此选项不合题意;D、是轴对称图形,故此选项符合题意;故选:D【点睛】此题主要考查了轴对称图形,关键是掌握
7、如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形2、B【分析】由对称得OP1OP3.5,OPOP23.5,再根据三角形任意两边之和大于第三边,即可得出结果【详解】连接,如图: 点关于直线,的对称点分别是点,故选:【点睛】本题考查线轴对称的性质以及三角形三边关系,解本题的关键熟练掌握对称性和三角形边长的关系3、D【分析】根据轴对称图形的定义,即是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形叫轴对称图形判断即可;【详解】由已知图形可知, 是轴对称图形;故选D【点睛】本题主要考查了轴对称图形的识别,准确分析判断是解题的关键4、A【分析】根据剪下的图形为等腰
8、直角三角形,展开后为正方形,可知剪去的仍为正方形,由此即知答案【详解】由题意知,剪下的图形为等腰直角三角形,展开后为正方形,所以剪去的为正方形,原图为正方形,其还原的过程如下:故选:A【点睛】本题考查了图形的折叠及裁剪,关键是根据折叠后裁剪的过程还原,对学生的想象能力有更高的要求5、C【分析】由题意依据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时也可以说这个图形关于这条直线(成轴)对称进行分析判断即可【详解】解:A.不是轴对称图形,故本选项错误;B.不是轴对称图形,故本选项错误;C.是轴对称图形,故本选项正确;D.不是轴对称图形,故本
9、选项错误故选:C【点睛】本题考查轴对称图形的概念,注意掌握轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时互相重合6、D【分析】根据轴对称图形的定义判断即可【详解】不是轴对称图形,A不符合题意;不是轴对称图形,B不符合题意;不是轴对称图形,C不符合题意;是轴对称图形,D符合题意;故选D【点睛】本题考查了轴对称图形即沿直线折叠,直线两旁的部分能够完全重合的图形,熟记定义是解题的关键7、B【分析】根据翻折的性质可得BOGBOG,再表示出AOB,然后根据平角等于180列出方程求解即可【详解】解:由翻折的性质得,BOGBOG,AOB=6128,AOBBO
10、GBOG180,2BOG180612811832,解得BOG5916故选:B【点睛】本题考查了翻折变换的性质,熟记翻折的性质并根据平角等于180列出方程是解题的关键8、B【分析】根据轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形,逐项分析判断即可【详解】解:A.不是轴对称图形,故该选项不正确,不符合题意;B.是轴对称图形,故该选项正确,符合题意;C. 不是轴对称图形,故该选项不正确,不符合题意;D. 不是轴对称图形,故该选项不正确,不符合题意;故选B【点睛】本题考查了轴对称图形的识别,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合9、B【分析】根据三角
11、形内角和的性质可求得,再根据对称的性质可得,即可求解【详解】解:根据三角形内角和的性质可求得由轴对称图形的性质可得,故选:B【点睛】此题考查了三角形内角和的性质,轴对称图形的性质,解题的关键是掌握并利用相关基本性质进行求解10、A【分析】根据轴对称的定义去判断即可【详解】吉是轴对称图形,A符合题意;祥不是轴对称图形,B不符合题意;如不是轴对称图形,C不符合题意;意不是轴对称图形,D不符合题意;故选A【点睛】本题考查了轴对称图形,熟练掌握轴对称图形的定义即一个图形沿着某条直线折叠,直线两旁的图形能完全重合,是解题的关键二、填空题1、 【分析】(1)根据折叠前后对应角相等即可得解;(2)先求出,再
12、利用三角形外角定理计算即可;【详解】(1)将折叠后,是点落在边上的点,折痕为,;故答案是:(2),由(1)得:,;故答案是:【点睛】本题主要考查了直角三角形的性质,图形的折叠,三角形外角定理,准确计算是解题的关键2、5cm【分析】根据轴对称的性质得到PMMP1,PNNP2,然后等量代换可得PMN的周长为P1P2【详解】解:AOB内一点P,P1、P2分别是点P关于OA、OB的对称点,P1P2交OA于M,交OB于N,OA、OB分别是P与P1和P与P2的对称轴PMMP1,PNNP2;P1M+MN+NP2PM+MN+PNP1P25cm,PMN的周长为5cm故填5cm【点睛】本题考查轴对称的性质,对应点
13、的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等3、【分析】根据翻转变换的性质得到,根据三角形的外角的性质计算,即可得到答案【详解】解:,由折叠的性质可知,设,解得:,故答案为:【点睛】本题考查的是翻转变换的性质,三角形的外角的性质,翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等4、30【分析】由 得出,由折叠性质可知,再根据三角形外角性质求出【详解】解:如图,设 交 于点 ,由折叠性质可知,故答案为:【点睛】本题主要考查了平行线的性质,三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两
14、个内角的和是解题的关键5、9【分析】根据折叠可得BEBC7,CDDE,进而求出AE,将AED的周长转化为ACAE,求出结果即可【详解】解:由折叠得,BEBC7,CDDE,AEABBE1073cm,AED的周长AD+DE+AEAC+AE6+39 (cm),故答案为:9【点睛】考查折叠轴对称的性质,将三角形的周长转化为ACAE是解决问题的关键三、解答题1、(1)答案见解析;(2)答案见解析【分析】(1)分成是顶角和顶角两种情况进行讨论,当是底角时,首先作一个A,在一边上截取ABa,然后过B作另一边的垂线BR,然后在AR的延长线上截取RCAR,连接BC,即可得到三角形,当是顶角时,作D,在角的两边上
15、截取DEDFa,则DEF就是所求三角形;(2)作M,在角的边上截取MNMH,则MNH就是所求【详解】(1)如图所示:ABC和DEF都是所求的三角形;(2)如图所示:MNH是所求的三角形【点睛】本题考查了三角形的作法,正确进行讨论,理解等腰三角形的性质:三线合一定理,是关键2、(1)见解析;(2)见解析【分析】根据题意,先分别找到点A、B、C关于直线l的对称点D、E、F,即可求解;(2)连接BD交直线l于点P,点P即为所求的点,根据轴对称图形的性质,可得PB=PE,从而得到当B、P、D三点共线时,PD+PE的长度最小,即可求解【详解】解:(1)如图所示,DEF即为所求(2)连接BD交直线l于点P
16、,点P即为所求的点,理由如下:点B点E关于直线l对称,PB=PE,PD+PE=PD+PBBD,当B、P、D三点共线时,PD+PE的长度最小【点睛】本题主要考查了轴对称图形,熟练掌握轴对称图形的性质是解题的关键3、见解析【分析】根据轴对称图形的定义求解即可轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形【详解】解:如图所示,【点睛】此题考查了轴对称图形的定义,解题的关键是熟练掌握轴对称图形的定义轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形4、(1)见解析;(2)见解析,点P坐标为(3,0)【分析】(1)分别作出点A、B、C关于y轴的对称
17、点,再首尾顺次连接可得;(2)作点A关于x轴的对称点,再连接交x轴于点P【详解】(1)如图所示,即为所求;(2)如图所示,作点A关于x轴的对称点,再连接交x轴于点P,其点P坐标为(3,0)【点睛】本题主要考查作图轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质及最短路线问题5、(1)-2,1,7;(2)4;(3)存在这样的点M,对应的y=2.5或y=-3.5;(4)3t+3,5t+9,2t+6【分析】(1)根据非负数的性质得出,解方程可求,根据数b是最小的正整数,可得b=1即可;(2)先求出折点表示的是,然后点B到折点的距离,利用有理数加法即可出点B对称点;(3)由题意知AB=3,点 M
18、在AB之间,AM+BM=36,分两种情况讨论M在AB之外的情况第一种情况,当M在A点左侧时,由MA+MB=MA+MA+AB=6, 第二种情况,当M在B点右侧时由MA+MB=MB+MB+AB=6,解方程即可; (4)分别写出点A、B、C表示的数为,用含t的代数式表示出AB、AC、BC即可【详解】解:(1),且,解得,数b是最小的正整数,b=1,故答案为:-2,1,7;(2)将数轴折叠,使得点A与点C重合,AC中点D表示的数为,点B表示1,BD=2.5-1=1.5,点B对应的数是,2.5+1.5=4,故答案为:4;(3)由题意知AB=3,M在AB之间,AM+BM=36,分两种情况讨论M在AB之外的情况第一种情况,当M在A点左侧时由MA+MB=MA+MA+AB=6,得MA=1.5y-2,-2-y=1.5y=-3.5;第二种情况,当M在B点右侧时由MA+MB=MB+MB+AB=6,得MB=1.5y1,y-1=1,5y=2.5;故存在这样的点M,对应的y=2.5或y=-3.5(4)点A以每秒1个单位长度的速度向左运动,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,t秒钟后,A点表示-2-t,B点表示1+2t,C点表示7+4t;【点睛】本题考查了非负数和性质,一元一次方程的应用、数轴及两点间的距离,折叠性质,用代数式标数距离,解题的关键是利用数轴的特点能求出两点间的距离