2022年精品解析京改版九年级数学下册第二十五章-概率的求法与应用专题训练试卷(无超纲带解析).docx

上传人:可****阿 文档编号:30744388 上传时间:2022-08-06 格式:DOCX 页数:21 大小:831.88KB
返回 下载 相关 举报
2022年精品解析京改版九年级数学下册第二十五章-概率的求法与应用专题训练试卷(无超纲带解析).docx_第1页
第1页 / 共21页
2022年精品解析京改版九年级数学下册第二十五章-概率的求法与应用专题训练试卷(无超纲带解析).docx_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《2022年精品解析京改版九年级数学下册第二十五章-概率的求法与应用专题训练试卷(无超纲带解析).docx》由会员分享,可在线阅读,更多相关《2022年精品解析京改版九年级数学下册第二十五章-概率的求法与应用专题训练试卷(无超纲带解析).docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、九年级数学下册第二十五章 概率的求法与应用专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、不透明的袋子中有4个球,上面分别标有1,2,3,4数字,它们除标号外没有其他不同从袋子中任意摸出1个球,摸

2、到标号大于2的概率是( )ABCD2、如图,正方形ABCD内接于O,在这个圆面上随意抛一粒豆子(豆子大小忽略不计),若豆子落在正方形ABCD内的概率记为P1,豆子落在图中阴影部分内的概率记为P2,则对P1和P2的大小判断正确的是()AP1P2BP1P2CP1P2D与圆的半径有关3、某林业部门要考察某幼苗的成活率,于是进行了试验,表中记录了这种幼苗在一定条件下移植的成活情况,则下列说法不正确的是()移植总数n400150035007000900014000成活数m369133532036335807312628成活的频率0.9230.8900.9150.9050.8970.902A在大量重复试验

3、中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率B可以用试验次数累计最多时的频率作为概率的估计值C由此估计这种幼苗在此条件下成活的概率约为0.9D如果在此条件下再移植这种幼苗20000株,则必定成活18000株4、盒子中装有形状、大小完全相同的3个小球,球上分别标有数字1,1,2,从中随机取出一个,其上的数字记为k1放回后再取一次,其上的数记为k2,则一次函数yk1x+b与第一象限内y的增减性一致的概率为()ABCD5、经过某十字路口的汽车,可能直行,也可能向左转或向右转如果这三种可能性大小相同,甲、乙两辆汽车经过这个十字路口时,一辆车向左转,一辆车向右转的概率是(

4、)ABCD6、某市教委高度重视自然灾害中的安全教育,要求各级各类学校从认识安全警告标志入手开展安全教育活动某数学兴趣小组准备了4张印有安全图标的卡片,正面图案如图所示,它们除此之外完全相同,把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片的正面图案中有一张是轴对称图形的概率是( )ABCD7、在一个不透明的袋子中装有3个除颜色外完全相同的小球,其中黑球1个,红球2个,从中随机摸出一个小球,则摸出的小球是黑色的概率是()ABCD8、甲、乙两名同学在一次用频率估计概率的试验中统计了某一结果出现的频率,绘制统计图如图所示,符合这一结果的试验可能是( )A抛一枚硬币,出现正面的概率B任意写一个

5、正整数,它能被 3 整除的概率C从一装有 1 个白球和 2 个红球的袋子中任取一球,取到红球的概率D掷一枚正方体的骰子,出现 6 点的概率9、由三个正方形彼此嵌套组成一个如图所示的图案,其中每个内层正方形的顶点都是其外层正方形边的中点将一个飞镖随机投掷到该图案上,则飞镖落在阴影区域的概率是( ) ABCD10、抛掷一枚质地均匀的散子(骰子六个面上分别标有1,2,3,4,5,6六个点数),则骰子面朝上的点数大于4的概率是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、从2,1,1,3,5五个数中随机选取一个数作为二次函数yax2+x3中a的值,则二次函数图象开

6、口向上的概率是 _2、在一个不透明的袋子里装有红球和白球共30个,这些球除颜色外其余都相同小明通过多次试验发现,摸出白球的频率稳定在0.3左右,则袋子里可能有 _个红球3、如图,在33正方形网格中,A、B在格点上,在网格的其它格点上任取一点C,能使ABC为等腰三角形的概率是_4、大数据分析技术为打赢疫情防控阻击战发挥了重要作用如图是小明同学的吉祥码示意图,用黑白打印机打印在边长为2cm的正方形区域内,图中黑色部分的总面积为2.4cm2,现在向正方形区域内随机掷点,点落入黑色部分的概率为 _5、在不透明的口袋里装有4个黑色棋子和若干白色棋子,每个棋子除颜色外完全相同从口袋里随机摸出一个棋子,摸到

7、黑球的概率是,则白色棋子个数为_三、解答题(5小题,每小题10分,共计50分)1、邮票素有“国家名片”之称,方寸之间,包罗万象为宣传2022年北京冬奥会,中国邮政发行了一套冬奥会邮票,其中有一组展现雪上运动的邮票,如图所示:某班级举行冬奥会有奖问答活动,答对的同学可以随机抽取邮票作为奖品(1)在抢答环节中,若答对一题,可从4枚邮票中任意抽取1枚作为奖品,则恰好抽到“冬季两项”的概率是_;(2)在抢答环节中,若答对两题,可从4枚邮票中任意抽取2枚作为奖品,请用列表或画树状图的方法,求恰好抽到“高山滑雪”和“自由式滑雪”的概率2、苗木种植不仅绿了家园,助力脱贫攻坚,也成为乡村增收致富的“绿色银行”

8、小王承包了一片荒山,他想把这片荒山改造成一个苹果园,现在有一种苹果树苗,它的成活率如下表所示:移植棵数()成活数()成活率()移植棵数()成活数()成活率()50470.940150013350.8902702350.870350032030.9154003690.923700063357506620.88314000126280.902根据以上信息,回答下列问题:(1)当移植的棵数是7000时,表格记录成活数是_,那么成活率是_(2)随着移植棵数的增加,树苗成活的频率总在0.900附近摆动,显示出一定的稳定性,可以估计树苗成活的概率是_(3)若小王移植10000棵这种树苗,则可能成活_;(4

9、)若小王移植20000棵这种树苗,则一定成活18000棵此结论正确吗?说明理由3、2021年是中国辛丑牛年,小明将收集到的以下3张牛年邮票分别放到A、B、C三个完全相同的不透明盒子中,现从中随机抽取一个盒子(1)“小明抽到面值为80分的邮票”是_事件(填“随机”“不可能”或“必然”);(2)小明先随机抽取一个盒子记下邮票面值后将盒子放回,再随机抽取一个盒子记下邮票面值,用画树状图(或列表)的方法,求小明抽到的两个盒子里邮票的面值恰好相等的概率4、2021年6月17日,神舟十二号成功发射,标志着我国载人航天踏上新征程某学校举办航天知识讲座,需要两名引导员,决定从A,B,C,D四名志愿者中,通过抽

10、签的方式确定两人抽签规则:将四名志愿者的名字分别写在四张完全相同且不透明卡片的正面,把四张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记下名字,再从剩余的三张卡片中随机抽取第二张,记下名字(1)“A志愿者被选中”是_ 事件(填“随机”或“不可能”或“必然”);(2)用画树状图或列表的方法求出A,B两名志愿者同时被选中的概率5、在一个不透明的盒子里有红球、黄球、绿球各一个,它们除了颜色外其余都相同,小颖从盒子里随机摸出一球,记录下颜色后放回盒子里,充分摇匀后,再随机摸出一球,并记录下颜色请用列表法或画树状图法,求小颖两次摸出的球颜色相同的概率-参考答案-一、单选题1、A【分析】根据题

11、意,总可能结果有4种,摸到标号大于2的结果有2种,进而根据概率公式计算即可【详解】解:总可能结果有4种,摸到标号大于2的结果有2种,从袋子中任意摸出1个球,摸到标号大于2的概率是故选A【点睛】本题考查了简单概率公式求概率,掌握概率公式是解题的关键概率=所求情况数与总情况数之比2、B【分析】求落在正方形和阴影部分内的概率,可直接求正方形的面积和阴影部分的面积即可得出二者的大小关系【详解】解:设的半径为r,则正方形的对角线为2r,故选:B【点睛】题目主要考查概率的比较,包括正方形和圆的基本性质,熟练掌握正方形和圆的基本性质是解题关键3、D【分析】根据频率估计概率逐项判断即可得【详解】解:A在大量重

12、复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率,则此选项说法正确;B可以用试验次数累计最多时的频率作为概率的估计值,则此选项说法正确;C由此估计这种幼苗在此条件下成活的概率约为0.9,则此选项说法正确;D如果在此条件下再移植这种幼苗20000株,则大约成活18000株,则此选项说法错误;故选:D【点睛】本题考查了频率估计概率,掌握理解利用频率估计概率是解题关键4、B【分析】分别计算所有情况数及满足条件的情况数,代入概率计算公式,可得答案【详解】盒子中装有形状、大小完全相同的3个小球,球上分别标有数字-1,1,2,从中随机取出一个,其上的数字记为,放回后再取一次

13、,其上的数记为,则共有9种情况,分别为:(-1,-1),(-1,1),(-1,2),(1,-1),(1,1),(1,2),(2,-1),(2,1),(2,2),一次函数yk1x+b与第一象限内y的增减性一致的有:(-1,1),(-1,2),一次函数yk1x+b与第一象限内y的增减性一致的概率为故选B【点睛】此题考查概率计算公式,判断一次函数与反比例函数的增减性,解题关键在于列出所有可能出现的情况5、C【分析】可以采用列表法或树状图求解:可以得到一共有9种情况,一辆向右转,一辆向左转有2种结果数,根据概率公式计算可得【详解】画“树形图”如图所示:这两辆汽车行驶方向共有9种可能的结果,其中一辆向右

14、转,一辆向左转的情况有2种,一辆向右转,一辆向左转的概率为;故选【点睛】此题考查了树状图法求概率解题的关键是根据题意画出树状图,再由概率所求情况数与总情况数之比求解6、A【分析】利用列表法列举所有的可能性,再由当心低温的图片为轴对称图形得到两张卡片的正面图案中有一张是轴对称图形的有6种,根据公式计算即可求出概率【详解】解:由题意知,当心低温的图片为轴对称图形,列表为:当心水灾1当心山体滑坡2当心低温3当心雷击4当心水灾11,21,31,4当心山体滑坡22,12,32,4当心低温33,13,23,4当心雷击44,14,24,3共有12种等可能的情况,其中两张卡片的正面图案中有一张是轴对称图形的有

15、6种,两张卡片的正面图案中有一张是轴对称图形的概率是=,故选:A【点睛】此题考查了列举法求事件的概率,正确判断轴对称图形,正确列举出所有不同情况是解题的关键7、B【分析】用黑色的小球个数除以球的总个数即可解题【详解】解:从中摸出一个小球,共有3种可能,其中摸出的小球是黑色的情况只有1种,故摸出的小球是黑色的概率是:故选:B【点睛】本题考查概率公式,解题关键是掌握随机事件发生的概率8、B【分析】根据统计图可知频率随着次数的增加稳定在左右,进而求得各项的概率即可求解【详解】解:A. 抛一枚硬币,出现正面的概率为B. 任意写一个正整数,它能被 3 整除的概率为C. 从一装有 1 个白球和 2 个红球

16、的袋子中任取一球,取到红球的概率为D. 掷一枚正方体的骰子,出现 6 点的概率为根据统计图可知频率随着次数的增加稳定在左右,故选B【点睛】本题考查了根据描述求简单概率,用频率估计概率,分别计算概率并结合统计图求解是解题的关键9、B【分析】设大正方形的边长为,求得空白区域的面积占整个面积的比,进而可得镖落在阴影区域的概率【详解】解:设大正方形的边长为,则中间正方形的边长为,小正方形的边长为,整个区域的面积为,空白区域的面积为则空白区域占,故镖落在空白区域的概率等于则镖落在阴影区域的概率= ,故选:B【点睛】此题考查了概率的有关计算,掌握概率的计算方法并求得空白区域所占的比重是解题的关键10、B【

17、分析】由题意根据掷得面朝上的点数大于4情况有2种,进而求出概率即可【详解】解:掷一枚均匀的骰子时,有6种情况,出现点数大于4的情况有2种,掷得面朝上的点数大于4的概率是.故选:B【点睛】本题考查概率的求法,注意掌握如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=二、填空题1、【分析】二次函数图象开口向上得出a0,从所列5个数中找到a0的个数,再根据概率公式求解可得【详解】解:从2,1,1,3,5五个数中随机选取一个数,共有5种等可能结果,其中使该二次函数图象开口向上的有1,3,5这3种结果,该二次函数图象开口向上的概率为,故答案为:【点睛】本

18、题主要考查概率公式及二次函数的性质,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数2、21【分析】根据大量反复试验下频率的稳定值即为概率,即可用球的总数乘以白球的频率,可求得白球数量,从而得到红球的熟练【详解】解:小明通过多次试验发现,摸出白球的频率稳定在0.3左右,白球的个数=300.3=9个,红球的个数=30-9=21个,故答案为:21【点睛】本题主要考查利用频率估计概率,大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率3、【分析】分

19、三种情况:点A为顶点;点B为顶点;点C为顶点;得到能使ABC为等腰三角形的点C的个数,再根据概率公式计算即可求解【详解】如图,AB,若ABAC,符合要求的有3个点;若ABBC,符合要求的有2个点;若ACBC,不存在这样格点这样的C点有5个能使ABC为等腰三角形的概率是故答案为:【点睛】此题考查等腰三角形的判定和概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)4、【分析】根据几何概率的求解方法:用黑色区域的面积除以正方形面积即可得到答案【详解】解:由题意得:点落入黑色部分的概率为,故答案为:【点睛】本题主要考查了几何概率,解题的关键在

20、于能够熟练掌握几何概率的求解方法5、12【分析】设白色棋子有x个,根据概率公式列方程求解即可【详解】解:设白色棋子有x个,根据题意得:,解得:x=12,经检验x=12是原方程的根,故答案为:12【点睛】本题考查了分式方程的应用,以及概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数三、解答题1、(1);(2)见解析,【分析】(1)利用简单概率公式计算即可;(2)利用画树状图或列表法,计算【详解】(1)事件一共有4种等可能性,抽到“冬季两项”这个事件只有1种可能性,恰好抽到“冬季两项”的概率是,故答案为:; (2)解:直接使用图中的序号代表四枚邮票方法一:由题意画

21、出树状图由树状图可知,所有可能出现的结果共有12种,即,并且它们出现的可能性相等 其中,恰好抽到“高山滑雪”和“自由式滑雪”(记为事件A)的结果有2种,即或方法二:由题意列表第二枚第一枚由表可知,所有可能出现的结果共有12种,即,并且它们出现的可能性相等 其中,恰好抽到“高山滑雪”和“自由式滑雪”(记为事件A)的结果有2种,即或 【点睛】本题考查了简单概率计算,画树状图或列表法计算概率,熟练画树状图或列表是解题的关键2、(1)6335;0.905;(2)0.900;(3)9000棵;(4)此结论不正确,理由见解析【分析】(1)根据表格中的数据求解即可;(2)随着移植棵数的增加,树苗成活的频率总

22、在0.900附近摆动,显示出一定的稳定性,可以估计树苗成活的概率是0.900;(3)利用成活数=总数成活概率即可得到答案;(4)根据概率只是用来衡量在一定条件下,某事件发生的可能性大小,并不代表事件一定会发生,即可得到答案(1)解:由表格可知,当移植的棵数是7000时,表格记录成活数是6335,成活率,故答案为:6335;0.905;(2)解:大量重复试验下,频率的稳定值即为概率值,可以估计树苗成活的概率是0.900,故答案为:0.900;(3)解:由题意得:若小王移植10000棵这种树苗,则可能成活课树苗,故答案为:9000棵;(4)解:若小王移植20000棵这种树苗,则一定成活18000棵

23、此结论不正确,理由如下:概率只是用来衡量在一定条件下,某事件发生的可能性大小,并不代表事件一定会发生,若小王移植20000棵这种树苗,不一定能成活18000棵,只能说是可能成活18000棵【点睛】本题考查利用频率估计概率,解答本题的关键是明确概率的定义,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率3、(1)不可能;(2)P(两个盒子里邮票的面值恰好相等)【分析】(1)由三张邮票里面没有80分的邮票即可判断这是不可能事件;(2)列树状图先得到所有的等可能性的结果数,然后找到

24、两个盒子里邮票的面值恰好相等的结果数,再由概率公式求解即可【详解】解:(1)三张邮票里面没有80分的邮票“小明抽到面值为80分的邮票”是不可能事件,故答案为:不可能;(2)设A、B、C分别代表120分、150分、50分的邮票,列树状图如下所示:由树状图可知一共有9种等可能性的结果数,其中两个盒子里邮票的面值恰好相等的结果数有三种P(两个盒子里邮票的面值恰好相等)【点睛】本题主要考查了事件发生的可能性,树状图法或列表法求解概率,熟练掌握相关知识是解题的关键4、 (1)随机;(2)见解析【分析】(1)根据随机事件、不可能事件及必然事件的概念求解即可;(2)画树状图,得出所有等可能结果数,再从中找到

25、符合条件的结果数,继而利用概率公式求解即可【详解】(1)根据随机事件的概念,A志愿者被选中是随机事件上,故答案为:随机(2) 由上述树状图可知:所有可能出现的结果共有12种,并且每一个结果出现的可能性相同其中A,B两名志愿者同时被选中的有2种.P(A,B两名志愿者同时被选中)= 【点睛】此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件用到的知识点为:概率=所求情况数与总情况数之比5、【分析】画树状图,共有9种等可能的结果,小颖两次摸出的球颜色相同的结果有3个,再由概率公式求解即可【详解】解:画树状图如下:共有9种等可能的结果,小颖两次摸出的球颜色相同的结果有3个,小颖两次摸出的球颜色相同的概率为【点睛】本题考查的是用树状图法求概率,解题的关键是要注意此题是放回试验还是不放回试验用到的知识点为:概率所求情况数与总情况数之比

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁