《2022年北师大版八年级数学下册第四章因式分解专题测试试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《2022年北师大版八年级数学下册第四章因式分解专题测试试题(含答案解析).docx(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版八年级数学下册第四章因式分解专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列等式中,从左到右的变形是因式分解的是( )ABCD2、下列各式中,能用完全平方公式分解因式的是()ABCD
2、3、下列多项式中有因式x1的是()x2+x2;x2+3x+2;x2x2;x23x+2ABCD4、下列式子从左到右的变形中,属于因式分解的是( )ABCD5、已知a22a10,则a42a32a1等于( )A0B1C2D36、下列从左边到右边的变形,属于因式分解的是( )Ax2x6(x2)(x3)Bx22x1x(x2)1Cx2y2(xy)2D(x1)(x1)x217、三角形的三边长分别为a,b,c,且满足,则该三角形的形状是( )A任意等腰三角形B等腰直角三角形C等腰三角形或直角三角形D任意直角三角形8、下列多项式:(1)a2b2;(2)x2y2;(3)m2n2;(4)b2a2;(5)a64,能用
3、平方差公式分解的因式有( )A2个B3个C4个D5个9、已知m1n,则m3+m2n+2mn+n2的值为( )A2B1C1D210、如果a、b分别是的整数部分和小数部分,那么的值是( )A8BC4D第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知,则代数式的值为_2、分解因式_3、写出的一个有理化因式是_4、因式分解:=_5、因式分解:_三、解答题(5小题,每小题10分,共计50分)1、(1)因式分解: (2)计算:2、已知,求:(1)的值;(2)的值3、分解因式:(1)3a26a+3 (2)(x2+y2)24x2y24、下面是某同学对多项式(x2+2x)(x2+2x
4、+2)+1进行因式分解的过程解:设x2+2x=y,原式 =y(y+2)+1 (第一步)=y2+2y+1 (第二步)=(y+1)2 (第三步)=(x2+2x+1)2 (第四步)(1)该同学第二步到第三步运用了因式分解的( )A提取公因式 B平方差公式C两数和的完全平方公式 D两数差的完全平方公式(2)该同学在第四步将y用所设中的含x的代数式代换,这个结果是否分解到最后? (填“是”或“否”)如果否,直接写出最后的结果 (3)请你模仿以上方法尝试对多项式(x24x+3)(x24x+5)+1进行因式分解5、因式分解:-参考答案-一、单选题1、C【分析】根据因式分解的定义:把一个多项式化成几个整式乘积
5、的形式,即可进行判断【详解】A. ,变形是整式乘法,不是因式分解,故A错误;B. ,右边不是几个因式乘积的形式,故B错误;C. ,把一个多项式化成两个整式乘积的形式,变形是因式分解,故C正确;D. ,变形是整式乘法,不是因式分解,故D错误【点睛】本题考查因式分解的定义,掌握因式分解的定义是解题的关键2、D【分析】根据完全平方公式法分解因式,即可求解【详解】解:A、不能用完全平方公式因式分解,故本选项不符合题意;B、不能用完全平方公式因式分解,故本选项不符合题意;C、不能用完全平方公式因式分解,故本选项不符合题意;D、能用完全平方公式因式分解,故本选项符合题意;故选:D【点睛】本题主要考查了完全
6、平方公式法分解因式,熟练掌握 是解题的关键3、D【分析】根据十字相乘法把各个多项式因式分解即可判断【详解】解:x2+x2;x2+3x+2;x2x2;x23x+2有因式x1的是故选:D【点睛】本题考查了十字相乘法因式分解,对于形如的二次三项式,若能找到两数,使,且,那么就可以进行如下的因式分解,即4、B【分析】把一个多项式化为几个整式的积的形式叫把这个多项式分解因式,根据定义逐一判断即可.【详解】解:是整式的乘法,故A不符合题意;是因式分解,故B符合题意;右边不是整式的积的形式,不是因式分解,故C不符合题意;右边不是整式的积的形式,不是因式分解,故D不符合题意;故选B【点睛】本题考查的是因式分解
7、的定义,掌握“根据因式分解的定义判断变形是否是因式分解”是解本题的关键.5、C【分析】由a22a10,得出a22a1,逐步分解代入求得答案即可【详解】解:a22a10,a22a1,a42a32a+1a2(a22a)2a+1a22a+11+12故选:C【点睛】此题考查因式分解的实际运用,分组分解和整体代入是解决问题的关键6、A【分析】把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,根据概念逐一判断即可.【详解】解:x2x6(x2)(x3)属于因式分解,故A符合题意;x22x1x(x2)1,右边没有化为整式的积的形式,不是因式分解,故B不符合题意;x2y2(xy)2的左右两边不相等,
8、不能分解因式,不是因式分解,故C不符合题意;(x1)(x1)x21是整式的乘法运算,不是因式分解,故D不符合题意;故选A【点睛】本题考查的是因式分解的概念,掌握“利用因式分解的概念判断代数变形是否是因式分解”是解题的关键.7、C【分析】把所给的等式进行因式分解,求出三角形三边的关系,进而判断三角形的形状【详解】解:,已知的三边长为,=0,或,即,或,的形状为等腰三角形或直角三角形,故选C【点睛】本题考查了分组分解法分解因式,勾股定理的逆定理,等腰三角形的判定等等,利用因式分解最后整理成多项式的乘积等于0的形式是解题的关键8、B【分析】平方差公式:,根据平方差公式逐一分析可得答案.【详解】解:a
9、2b2不能用平方差公式分解因式,故(1)不符合题意;x2y2能用平方差公式分解因式,故(2)符合题意;m2n2能用平方差公式分解因式,故(3)符合题意;b2a2不能用平方差公式分解因式,故(4)不符合题意;a64能用平方差公式分解因式,故(5)符合题意;所以能用平方差公式分解的因式有3个,故选B【点睛】本题考查的是利用平方差公式分解因式,掌握“”是解本题的关键.9、C【分析】先化简代数式,再代入求值即可;【详解】m1n,m+n1,m3+m2n+2mn+n2m2(m+n)+2mn+n2m2+2mn+n2(m+n)2121,故选:C【点睛】本题主要考查了代数式求值,准确计算是解题的关键10、B【分
10、析】先求得的范围,进而求得的范围即可求得的值,进而代入代数式求值即可【详解】则a、b分别是的整数部分和小数部分,则故选B【点睛】本题考查了估算无理数的大小,二次根式的混合运算,求得的值是解题的关键二、填空题1、12【分析】把因式分解,再代入已知的式子即可求解【详解】,=34=12故答案为:12【点睛】此题主要考查代数式求值,运用完全平方公式因式分解,解题的关键是熟知因式分解的运用2、【分析】直接利用提公因式法分解因式即可【详解】解:故答案为:【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等3、【分析】充
11、分利用平方差公式,得出有理化因子即可【详解】解:的一个有理化因式是,故答案为:【点睛】本题考查了分子有理化,解题的关键是熟练掌握平方差公式进行求解4、【分析】原式提取a,再利用完全平方公式分解即可【详解】解:原式=a(m2-2mn+n2)=a(m-n)2,故答案为:a(m-n)2【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键5、【分析】直接提取公因式,再利用完全平方公式分解因式得出答案【详解】解:原式 故答案为:【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式分解因式是解题关键三、解答题1、(1);(2)【分析】(1)首先提取公因式,
12、再根据完全平方公式计算,即可得到答案;(2)根据平方差公式和合并同类项的性质计算,即可得到答案【详解】(1);(2)【点睛】本题考查了乘法公式、整式、因式分解的知识;解题的关键是熟练掌握平方差公式、完全平方公式,从而完成求解2、(1)48;(2)52【分析】(1)原式提取公因式,将已知等式代入计算即可求出值;(2)原式利用完全平方公式变形后,将各自的值代入计算即可求出值【详解】解:(1),;(2),【点睛】此题考查了因式分解,完全平方公式变形,代数式求值,熟练掌握因式分解方法,完全平方公式是解本题的关键3、(1);(2)【分析】(1)先提公因式3,再由完全平方公式进行因式分解;(2)先由完全平
13、方公式去括号,化简再由完全平方公式以及平方差公式进行因式分解即可【详解】(1),;(2),【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键4、(1)C;(2)否,;(3)【分析】(1)根据题意可知,第二步到第三步用到了完全平方公式;(2)观察第四步可知,括号里面的还是一个完全平方公式还可以继续分解因式,由此求解即可;(3)仿照题意,设然后求解即可【详解】解:(1)根据题意可知,该同学第二步到第三步运用了因式分解的两数和的完全平方公式,故选C;(2)观察第四步可知,括号里面的还是一个完全平方公式还可以继续分解因式,分解分式的结果为:,故答案为:否,;(3)设 【点睛】本题主要考查了用完全平方公式分解因式,解题的关键在于能够准确理解题意5、【分析】根据题意先提取公因式,进而利用完全平方差公式即可进行因式分解.【详解】解:【点睛】本题考查因式分解,注意掌握因式分解的常见方法有提取公因式法、公式法、十字交叉相乘法、分组分解法等.