2022年必考点解析北师大版八年级数学下册第三章图形的平移与旋转达标测试试题(含答案解析).docx

上传人:可****阿 文档编号:30741859 上传时间:2022-08-06 格式:DOCX 页数:25 大小:1.14MB
返回 下载 相关 举报
2022年必考点解析北师大版八年级数学下册第三章图形的平移与旋转达标测试试题(含答案解析).docx_第1页
第1页 / 共25页
2022年必考点解析北师大版八年级数学下册第三章图形的平移与旋转达标测试试题(含答案解析).docx_第2页
第2页 / 共25页
点击查看更多>>
资源描述

《2022年必考点解析北师大版八年级数学下册第三章图形的平移与旋转达标测试试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《2022年必考点解析北师大版八年级数学下册第三章图形的平移与旋转达标测试试题(含答案解析).docx(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、八年级数学下册第三章图形的平移与旋转达标测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系中,若点与点关于原点对称,则点在( )A第一象限B第二象限C第三象限D第四象限2、下列图形中,是

2、中心对称图形的是()ABCD3、如图,E是正方形ABCD中CD边上的点,以点A为中心,把ADE顺时针旋转,得到ABF下列角中,是旋转角的是( )ADAEBEABCDABDDAF4、如图,将绕点按顺时针旋转一定角度得到,点的对应点点恰好落在边上,若,则的长为( )A3B2CD15、下列交通标志中既是中心对称图形,又是轴对称图形的是( )ABCD6、如图下面图形既是轴对称图形,又是中心对称图形的是()ABCD7、如图,在ABC中,ACB90,BAC20,将ABC绕点C顺时针旋转90得到ABC,点B的对应点B在边AC上(不与点A,C重合),则AAB的度数为()A20B25C30D458、小明将图案绕

3、某点连续旋转若干次,每次旋转相同角度,设计出一个外轮廓为正六边形的图案(如图),则可以为( )A30B60C90D1209、在平面直角坐标系中,点关于原点对称的点的坐标是( )ABCD10、下列图形中,是中心对称图形的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,将RtABO绕原点O逆时针旋转90得到CDO,则点D的坐标是_2、已知在ABC中,C90,AC12,BC5,在平面内将ABC绕B点旋转,点A落到A,点C落到C,若旋转后点C的对应点C落直线AB上,那么AA的长为_3、如图,将绕点顺时针旋转得到,点的对应点恰好落在边上,则_(用含的式子表示

4、)4、坐标平面内的点P(m,2020)与点Q(2021,n)关于原点对称,则mn_5、数学课上,老师让同学们观察如图所示的图形,问:它绕着圆心O旋转多少度后和它自身重合? 甲同学说:45;乙同学说:60;丙同学说:90;丁同学说:135以上四位同学的回答中,错误的是_三、解答题(5小题,每小题10分,共计50分)1、如图,已知三角形ABC中,B90,将三角形ABC沿着射线BC方向平移得到三角形DEF,其中点A、点B、点C的对应点分别是点D、点E、点F,且CEDE(1)如图,如果AB4,BC2,那么平移的距离等于_;(请直接写出答案) (2)在第(1)题的条件下,将三角形DEF绕着点E旋转一定的

5、角度(0360),使得点F恰好落在线段DE上的点G处,并联结CG、AG请根据题意在图中画出点G与线段CG、AG,那么旋转角等于_;(请直接写出答案)(3)在图中,如果ABa,BCb,那么此时三角形ACG的面积等于_;(用含a、b的代数式表示)(4)在第(3)小题的情况下,如果平移的距离等于8,三角形ABC的面积等于6,那么三角形ACG的面积等于_;(请直接写出答案)如果平移距离等于m,三角形ABC的面积等于n,那么三角形ACG的面积等于_(用含m、n的代数式表示,请直接写出答案)2、如图,在1010的网格中建立如图的平面直角坐标系,线段AB两个端点的坐标分别是A(1,4),B(3,1)(1)画

6、出线段AB关于y轴对称的线段CD,则点A的对应点C的坐标是 ;(2)将线段AB先向左平移4个单位,再向下平移5个单位,画出平移后的对应线段EF,观察线段EF与DC是否关于某直线对称?若是,则对称轴是 ;E点坐标是 ;(3)ABP是以AB为直角边的格点等腰直角三角形(A,B,P三点都是小正方形的顶点),则点P的坐标是 3、如图都是由边长为1的小等边三角形构成的网格图,每个网格图中有3个小等边三角形已涂上阴影(1)请在下面三个网格图中分别涂上一个三角形,使得4个阴影小等边三角形组成一个轴对称图形(3个图形中所涂三角形不同);(2)在两个网格图中分别涂上一个三角形,使得4个阴影小等边三角形组成一个中

7、心对称图形(2个图形中所涂三角形不同)4、如图,在中,点,分别在边,上,且,此时,成立(1)将绕点逆时针旋转时,在图中补充图形,并直接写出的长度;(2)当绕点逆时针旋转一周的过程中,与的数量关系和位置关系是否仍然成立?若成立,请你利用图证明,若不成立请说明理由;(3)将绕点逆时针旋转一周的过程中,当,三点在同一条直线上时,请直接写出的长度5、如图,将ABC绕点A逆时针旋转得到ADE,点D在BC上,已知B70,求CDE的大小-参考答案-一、单选题1、B【分析】根据点(x,y)关于原点对称的点的坐标为(x,y)可求得m、n值,再根据象限内点的坐标的符号特征即可解答【详解】解:点与关于原点对称,m=

8、-2,m-n=3,n=1,点M(-2,1)在第二象限,故选:B【点睛】本题考查平面直角坐标系中关于原点对称的点的坐标、点所在的象限,熟知关于原点对称的点的坐标特征是解答的关键2、A【分析】把一个图形绕某点旋转后能与自身重合,则这个图形是中心对称图形,根据中心对称图形的定义逐一判断即可.【详解】解:选项A中的图形是中心对称图形,故A符合题意;选项B中的图形不是中心对称图形,故B不符合题意;选项C中的图形不是中心对称图形,故C不符合题意;选项D中的图形不是中心对称图形,故D不符合题意;故选A【点睛】本题考查的是中心对称图形的识别,掌握中心对称图形的定义是解本题的关键.3、C【分析】根据“旋转角是指

9、以图形在作旋转运动时,一个点与中心的旋转连线,与这个点在旋转后的对应点与旋转中心的连线,这两条线的夹角”,由此问题可求解【详解】解:由题意得:旋转角为DAB或EAF,故选C【点睛】本题主要考查旋转角,熟练掌握求一个旋转图形的旋转角是解题的关键4、B【分析】由直角三角形的性质可得AB2,BC2AB4,由旋转的性质可得ADAB,可证ADB是等边三角形,可得BDAB2,即可求解【详解】解:,BAC90C=90-BC2ABBC2=AC2+AB2AB2,BC2AB4,RtABC绕点A按顺时针旋转一定角度得到RtADE,ADAB,且B60ADB是等边三角形BDAB2,CDBCBD422故选:B【点睛】本题

10、考查了旋转的性质,等边三角形的判定和性质,直角三角形的性质,熟练运用旋转的性质是本题的关键5、C【分析】结合选项根据轴对称图形(把一个图形沿着某一条直线折叠,如果它能够与另一个图形完全重合,称这两个图形为轴对称)与中心对称图形(指把一个图形绕着某一点旋转,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称)的概念求解即可【详解】解:A、是轴对称图形,不是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,也是中心对称图形;D、不是轴对称图形,也不是中心对称图形故选:C【点睛】题目主要考查轴对称和中心对称图形的识别,深刻理解轴对称与中心对称图形的概念是解题关键

11、6、B【详解】解:A、是轴对称图形,但不是中心对称图形,故本选项不符合题意;B、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、是中心对称图形,但不是轴对称图形,故本选项不符合题意;D、是轴对称图形,但不是中心对称图形,故本选项不符合题意;故选:B【点睛】本题主要考查了轴对称图形和中心对称图形的定义,熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形是解题的关键7、B【分析】由旋转知ACAC,BACCAB,ACA90,从而得出ACA是等腰直角三角形,即

12、可解决问题【详解】解:将ABC绕点C顺时针旋转90得到ABC,ACAC,BACCAB,ACA90,ACA是等腰直角三角形,CAA45,BAC20,CAB20,AAB25故选:B【点睛】本题主要考查了图形的旋转,等腰直角三角形的性质,熟练掌握图形旋转前后对应线段相等,对应角相等是解题的关键8、B【分析】由题意依据每次旋转相同角度,旋转了六次,且旋转了六次刚好旋转了一周为360进行分析即可得出答案.【详解】解:因为每次旋转相同角度,旋转了六次,且旋转了六次刚好旋转了一周为360,所以每次旋转相同角度 .故选:B.【点睛】本题考查旋转的性质,解题的关键是能够找到旋转中心,从而确定旋转角的度数9、A【

13、分析】关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数,根据原理直接作答即可.【详解】解:点关于原点对称的点的坐标是: 故选A【点睛】本题考查的是关于原点成中心对称的两个点的坐标规律,掌握“关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数”是解题的关键.10、D【详解】解:A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、不是中心对称图形,故本选项不符合题意;D、是中心对称图形,故本选项符合题意;故选:D【点睛】本题主要考查了中心对称图形的定义,熟练掌握在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形能与原来的图形

14、重合,那么这个图形叫做中心对称图形是解题的关键二、填空题1、(-2,3)【分析】根据旋转的性质及直角三角形的性质解答【详解】解:由图易知DCAB2,COAO3,OCDOAB90,点A在第二象限,点D的坐标是(2,3),故答案为:(2,3)【点睛】注意旋转前后对应线段的长度不变,构造全等直角三角形求解即可2、或【分析】分两种情况讨论:当点在线段上和当点在线段的延长线上,根据旋转的性质求出对应边长度,再根据勾股定理求解即可【详解】当点在线段上,如图1,连接,C90,AC12,BC5,在平面内将ABC绕B点旋转,点A落到A,点C落到C,BCBC5,ACAC12,ACABBC8,;当C点在线段AB的延

15、长线上,如图2,连接AA,在平面内将ABC绕B点旋转,点A落到A,点C落到C,BCBC5,ACAC12,ACAB+BC18,综合以上可得AA的长为或故答案为:或【点睛】本题考查旋转的性质以及勾股定理,掌握旋转前后对应线段相等是解题的关键3、【分析】由旋转的性质可得DAB=,AD=AB,B,进而即可求解【详解】解:将绕点顺时针旋转得到,DAB=,AD=AB,B,B=,故答案是:【点睛】本题考查了旋转的性质,等腰三角形的性质,掌握旋转的性质是本题的关键4、-1【分析】根据“关于原点对称的点,横坐标与纵坐标都互为相反数”求出m、n的值,然后相加计算即可得解【详解】解:点P(m,-2020)与点Q(2

16、021,n)关于原点对称,m=2021,n=2020,mn=1.故答案为:-1.【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数5、乙【分析】观察图形,中间相当于一个圆心角被平分为8份,用一周角度数除以8,得45,故旋转45的整数倍,即可与自身重合【详解】圆被平分成八部分,则则旋转45的整数倍,就可以与自身重合,因而甲,丙,丁都正确;错误的是乙故答案为:乙【点睛】本题考查了旋转对称性,求得每一份的角度是解题的关键三、解答题1、(1)6;(2)见解析,90或者270;(3);(4)20;【分析】(1)根据平移的性质可得DE=AB=4,再由CE=DE,

17、则CE=4,即可得到BE=CE+BC=6;(2)由平移的性质可得DEF=B=90,则当DEF绕点E顺时针旋转270时,点F落在DE上的G点处,当DEF绕点E逆时针旋转90时,点F落在DE上的G点处;(3)由平移和旋转的旋转的性质可得:BAC=ECG,AC=CG=DF,然后证明ACG=90,得到,再由,即可得到,(4)由平移的距离等于8,可推出a+b=8,由三角形ABC的面积等于6,可得,则;同理当平移距离为m时,三角形ACG面积为n时,a+b=m,可得【详解】解:(1)由平移的性质可知:DE=AB=4,CE=DE,CE=4,BE=CE+BC=6,平移距离为6,故答案为:6;(2)如图所示,点G

18、,AG,CG即为所求;由平移的性质可得DEF=B=90,当DEF绕点E顺时针旋转270时,点F落在DE上的G点处,当DEF绕点E逆时针旋转90时,点F落在DE上的G点处,旋转角=90或270;故答案为:=90或270(3)由平移和旋转的旋转的性质可得:BAC=ECG,AC=CG=DF,B=90,ACB+ABC=90,ACB+ECG=90,ACG=90,又,故答案为:;(4)平移的距离等于8,CE+BC=8,即AB+BC=8,a+b=8,三角形ABC的面积等于6,;同理当平移距离为m时,a+b=m,三角形ABC的面积等于n,;故答案为:20;【点睛】本题主要考查了平移的性质,勾股定理,完全平方公

19、式的变形求值,解题的关键在于鞥个熟练掌握相关知识进行求解2、(1)画图见解析,;(2)轴,;(3)【分析】(1)先确定关于轴对称的对应点 再连接即可;(2)先确定平移后的对应点 再连接 由图形位置可得关于轴对称,再写出的坐标即可;(3)先求解 作再证明 是等腰直角三角形,同理:作证明,所以是等腰直角三角形,从而可得答案.【详解】解:(1)如图,线段即为所求作的线段, (2)如图,线段为平移后的线段,线段与线段关于轴对称,所以对称轴是轴,则 (3)如图,即为所求作的三角形,由勾股定理可得: 是等腰直角三角形,同理: 所以是等腰直角三角形.此时:【点睛】本题考查的是轴对称的性质,平移的性质,轴对称

20、的作图,平移的作图,勾股定理与勾股定理的逆定理的应用,等腰直角三角形的判定,数形结合的运用是解本题的关键.3、(1)见解析;(2)见解析【分析】(1)直接利用轴对称图形的性质得出符合题意的答案;(2)直接利用中心对称图形的性质得出符合题意的答案【详解】解:(1)如图所示:都是轴对称图形;(2)如图所示:都是中心对称图形【点睛】此题主要考查了利用轴对称设计图案、利用旋转设计图案,正确掌握相关定义是解题关键4、(1)补充图形见解析;(2),仍然成立,证明见解析;(3)或【分析】(1)根据旋转作图的方法作图,再根据勾股定理求出BE的长即可;(2)根据SAS证明得AD=BE,1=2,再根据1+3+4=

21、90得23+4=90,从而可得出结论;(3)分两种情况,运用勾股定理求解即可【详解】解:(1)如图所示,根据题意得,点D在BC上,是直角三角形,且BC=,CE= 由勾股定理得,;(2),仍然成立.证明:延长交于点,又,在中,.(3)当点D在AC上方时,如图1所示,同(2)可得AD=BE 同理可证 在RtCDE中,DE= 在RtACB中, 设AD=BE=x,在RtABE中, 解得, 当点D在AC下方时,如图2所示,同(2)可得AD=BE 同理可证 在RtCDE中,DE= 在RtACB中, 设AD=BE=x,在RtABE中, 解得, .所以,AD的值为或【点睛】本题考查了旋转的性质,全等三角形的判定与性质,勾股定理等知识,熟练解答本题的关键5、【分析】先由旋转的性质证明再利用等边对等角证明从而可得答案.【详解】解: 把ABC绕点A逆时针旋转得到ADE,B70, 【点睛】本题考查的是旋转的性质,等腰三角形的性质,掌握“旋转前后的对应角相等与等边对等角”是解本题的关键.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁