《人教版八年级数学下册第十八章-平行四边形专题训练试卷(精选).docx》由会员分享,可在线阅读,更多相关《人教版八年级数学下册第十八章-平行四边形专题训练试卷(精选).docx(36页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版八年级数学下册第十八章-平行四边形专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示,在 ABCD中,对角线AC,BD相交于点O,过点O的直线EF分别交AD于点E,BC于点F, ,则
2、ABCD的面积为( ) A24B32C40D482、如图,已知菱形ABCD的对角线AC,BD的长分别为6,8,AEBC,垂足为点E,则AE的长是( )A5B2CD3、已知直线,点P在直线l上,点,点,若是直角三角形,则点P的个数有( )A1个B2个C3个D4个4、直角三角形的两条直角边分别为5和12,那么这个三角形的斜边上的中线长为()A6B6.5C10D135、如图,在中,点,分别是,上的点,点,分别是,的中点,则的长为( )A4B10C6D86、如图,已知平行四边形ABCD的面积为8,E、F分别是BC、CD的中点,则AEF的面积为()A2B3C4D57、如图,菱形ABCD的边长为6cm,B
3、AD60,将该菱形沿AC方向平移2cm得到四边形ABCD,AD交CD于点E,则点E到AC的距离为()A1BC.2D28、如图,在长方形ABCD中,AB10cm,点E在线段AD上,且AE6cm,动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,同时点Q在线段BC上以vcm/s的速度由点B向点C运动,当EAP与PBQ全等时,v的值为()A2B4C4或D2或9、如图所示,在矩形ABCD中,已知AEBD于E,DBC30,BE=1cm,则AE的长为( )A3cmB2cmC2cmDcm10、若一个直角三角形的周长为,斜边上的中线长为1,则此直角三角形的面积为( )ABCD第卷(非选择题 70分)
4、二、填空题(5小题,每小题4分,共计20分)1、在菱形ABCD中,B60,BC2cm,M为AB的中点,N为BC上一动点(不与点B重合),将BMN沿直线MN折叠,使点B落在点E处,连接DE,CE,当CDE为等腰三角形时,线段BN的长为_2、如图,在ABC中,D,E分别是边AB,AC的中点,B50现将ADE沿DE折叠点A落在三角形所在平面内的点为A1,则BDA1的度数为 _3、正方形ABCD的边长为4,则图中阴影部分的面积为 _4、一个三角形三边长之比为456,三边中点连线组成的三角形的周长为30cm,则原三角形最大边长为_cm5、在四边形ABCD中,ABBCCDDA5cm,对角线AC,BD相交于
5、点O,且AC8cm,则四边形ABCD的面积为_cm2三、解答题(5小题,每小题10分,共计50分)1、如图,在正方形中,是直线上的一点,连接,过点作,交直线于点,连接(1)当点在线段上时,如图,求证:;(2)当点在直线上移动时,位置如图、图所示,线段,与之间又有怎样的数量关系?请直接写出你的猜想,不需证明2、已知:ABCD的对角线AC,BD相交于O,M是AO的中点,N是CO的中点,求证:BMDN,BM=DN3、阅读探究小明遇到这样一个问题:在中,已知,的长分别为,求的面积小明是这样解决问题的:如图1所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点(即的3个顶点都在小正方形
6、的顶点处),从而借助网格就能计算出的面积他把这种解决问题的方法称为构图法,(1)图1中的面积为_实践应用参考小明解决问题的方法,回答下列问题:(2)图2是一个的正方形网格(每个小正方形的边长为1)利用构图法在答题卡的图2中画出三边长分别为,的格点的面积为_(写出计算过程)拓展延伸(3)如图3,已知,以,为边向外作正方形和正方形,连接若,则六边形的面积为_(在图4中构图并填空)4、如图:已知BCD是等腰直角三角形,且DCB90,过点D作ADBC,使ADBC,在AD上取一点E,连结CE,点B关于CE的对称点为B1,连结B1D,并延长B1D交BA的延长线于点F,延长CE交B1F于点G,连结BG(1)
7、求证:CBGCDB1;(2)若AEDE,BC10,求BG长;(3)在(2)的条件下,H为直线BG上一点,使HCG为等腰三角形,则所有满足要求的BH的长是 (直接写出答案)5、如图,将直角三角形分割成一个正方形和两对全等的直角三角形,在RtABC中,ACB90,四边形FCEO是正方形,RtAOFRtAOD,RtBOERtBOD若设正方形的边长为x,则可以探究x与直角三角形ABC的三边a,b,c之间的关系探究:RtBOERtBOD,BDBEax,RtAOFRtAOD,ADAFbx,ABBD+AD,ax+bxc,x(1)小颖同学发现利用SABCSAOB+SAOC+SBOC也可以探究正方形的边长x与直
8、角三角形ABC的三边a,b,c之间的关系请你根据小颖的思路,完成她的探究过程(2)请你结合探究和小颖的解答过程验证勾股定理-参考答案-一、单选题1、B【解析】【分析】先根据平行四边形的性质可得,再根据三角形全等的判定定理证出,根据全等三角形的性质可得,从而可得,然后根据平行四边形的性质即可得【详解】解:四边形是平行四边形,在和中,则的面积为,故选:B【点睛】本题考查了平行四边形的性质、三角形全等的判定定理与性质等知识点,熟练掌握平行四边形的性质是解题关键2、D【解析】【分析】根据菱形的性质得出BO、CO的长,在RtBOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BCAE,可得出AE的
9、长度【详解】解:四边形ABCD是菱形,CO=AC=3,BO=BD=4,AOBO,BC= =5,S菱形ABCD=,S菱形ABCD=BCAE,BCAE=24,AE=,故选:D【点睛】此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分3、C【解析】【分析】分别讨论,三种情况,求出点坐标即可得出答案【详解】如图,当时,点与点横坐标相同,代入中得:,当时,点与点横坐标相同,代入中得:,当时,取中点为点,过点作交于点,设,在中,解得:,点有3个故选:C【点睛】本题考查直角三角形的性质与平面直角坐标系,掌握分类讨论的思想是解题的关键4、B【解析】【分析
10、】根据勾股定理可求得直角三角形斜边的长,再根据直角三角形斜边上的中线等于斜边的一半即可求解【详解】解:直角三角形两直角边长为5和12,斜边,此直角三角形斜边上的中线的长6.5故选:B【点睛】本题主要考查勾股定理及直角三角形斜边中线定理,熟练掌握勾股定理及直角三角形斜边中线定理是解题的关键5、B【解析】【分析】根据三角形中位线定理得到PD=BF=6,PDBC,根据平行线的性质得到PDA=CBA,同理得到PDQ=90,根据勾股定理计算,得到答案【详解】解:C=90,CAB+CBA=90,点P,D分别是AF,AB的中点,PD=BF=6,PD/BC,PDA=CBA,同理,QD=AE=8,QDB=CAB
11、,PDA+QDB=90,即PDQ=90,PQ=10,故选:B【点睛】本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键6、B【解析】【分析】连接AC,由平行四边形的性质可得,再由E、F分别是BC,CD的中点,即可得到,由此求解即可【详解】解:如图所示,连接AC,四边形ABCD是平行四边形,ADBC,AD=BC,AB=CD,ABCD,E、F分别是BC,CD的中点,故选B【点睛】本题主要考查了平行四边形的性质,与三角形中线有关的面积问题,解题的关键在于能够熟练掌握平行四边形的性质7、C【解析】【分析】根据题意连接BD,过点E作EFAC于点F,根据
12、菱形的性质可以证明三角形ABD是等边三角形,根据平移的性质可得ADAE,可得,进而求出AE,再利用30度角所对直角边等于斜边的一半即可得出结论【详解】解:如图,连接BD,过点E作EFAC于点F,四边形ABCD是菱形,AD=AB,BDAC,BAD=60,三角形ABD是等边三角形,菱形ABCD的边长为6cm,AD=AB=BD=6cm,AG=GC=3 (cm),AC=6 (cm),AA=2 (cm),AC=4 (cm),ADAE,AE=4(cm),EAF=DAC=DAB=30,EF=AE=2(cm)故选:C【点睛】本题考查菱形的性质以及等边三角形的判定与性质和平移的性质,解决本题的关键是掌握菱形的性
13、质8、D【解析】【分析】根据题意可知当EAP与PBQ全等时,有两种情况:当EA=PB时,APEBQP,当AP=BP时,AEPBQP,分别按照全等三角形的性质及行程问题的基本数量关系求解即可【详解】解:当EAP与PBQ全等时,有两种情况:当EA=PB时,APEBQP(SAS),AB=10cm,AE=6cm,BP=AE=6cm,AP=4cm,BQ=AP=4cm;动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,点P和点Q的运动时间为:42=2s,v的值为:42=2cm/s;当AP=BP时,AEPBQP(SAS),AB=10cm,AE=6cm,AP=BP=5cm,BQ=AE=6cm,52=
14、2.5s,2.5v=6,v=故选:D【点睛】本题考查矩形的性质及全等三角形的判定与性质等知识点,注意数形结合和分类讨论并熟练掌握相关性质及定理是解题的关键9、D【解析】【分析】根据矩形和直角三角形的性质求出BAE=30,再根据直角三角形的性质计算即可【详解】解:四边形ABCD是矩形,BAD=90,BDA=DBC=30,AEBD,DAE=60,BAE=30,在RtABE中,BAE=30,BE=1cm,AB=2cm,AE=(cm),故选:D【点睛】本题考查了矩形的性质,含30度角的直角三角形的性质,熟记各图形的性质并准确识图是解题的关键10、B【解析】【分析】根据直角三角形斜边上中线的性质,可得斜
15、边为2,然后利用两直角边之间的关系以及勾股定理求出两直角边之积,从而确定面积【详解】解:根据直角三角形斜边上中线的性质可知,斜边上的中线等于斜边的一半,得AC=2BD=2一个直角三角形的周长为3+,AB+BC=3+-2=1+等式两边平方得(AB+BC)2= (1+) 2,即AB2+BC2+2ABBC=4+2,AB2+BC2=AC2=4,2ABBC=2,ABBC=,即三角形的面积为ABBC=故选:B【点睛】本题考查直角三角形斜边上的中线,勾股定理,三角形的面积等知识点的理解和掌握,巧妙求出ACBC的值是解此题的关键,值得学习应用二、填空题1、cm或2cm【解析】【分析】分两种情况:如图1,当DE
16、=DC时,连接DM,作DGBC于G,由菱形的性质得出AB=CD=BC=2,ADBC,ABCD,得出DCG=B=60,A=120,DE=AD=2,求出DG=,CG=1,BG=BC+CG=3,由折叠的性质得:EN=BN,EM=BM=AM,MEN=B=60,证明ADMEDM,得出A=DEM=120,证出D、E、N三点共线,设BN=EN=x,则GN=3-x,DN=x+2,在RtDGN中,由勾股定理得出方程,解方程即可;如图2,当CE=CD上,CE=CD=AD,此时点E与A重合,N与点C重合,CE=CD=DE=DA,CDE是等边三角形,BN=BC=2(含CE=DE这种情况).【详解】解:分两种情况,如图
17、1,当DE=DC时,连接DM,作DGBC于G, 四边形ABCD是菱形,AB=CD=BC=2,ADBC,ABCD,DCG=B=60,A=120,DE=AD=2,DGBC,CDG=90-60=30,CG=CD=1,DG=CG=,BG=BC+CG=3,M为AB的中点,AM=BM=1,由折叠的性质得:EN=BN,EM=BM=AM,MEN=B=60,在ADM和EDM中,ADED,AMEM ,DMDM,ADMEDM(SSS),A=DEM=120,MEN+DEM=180,D、E、N三点共线,设BN=EN=x,则GN=3-x,DN=x+2,在RtDGN中,由勾股定理得:,解得:x=,即BN=cm;当CE=CD
18、时,CE=CD=AD,此时点E与A重合,N与点C重合,如图2所示:CE=CD=DE=DA,CDE是等边三角形,BN=BC=2cm(符合题干要求);综上所述,当CDE为等腰三角形时,线段BN的长为cm或2cm;故答案为cm或2cm【点睛】本题考查了折叠变换的性质、菱形的性质、全等三角形的判定与性质、三点共线、勾股定理、直角三角形的性质、等腰三角形的性质等知识,熟练掌握并灵活运用是解题的关键.2、80【解析】【分析】由翻折的性质得ADEA1DE,由中位线的性质得DE/BC,由平行线的性质得ADEB50,即可解决问题【详解】解:由题意得:ADEA1DE;D、E分别是边AB、AC的中点,DE/BC,A
19、DEBA1DE50,A1DA100,BDA118010080故答案为:80【点睛】本题主要考查了翻折变换及其应用问题;同时还考查了三角形的中位线定理等几何知识点熟练掌握各性质是解题的关键3、8【解析】【分析】正方形的对角线是它的一条对称轴,对应点到两边的都是垂直的,距离也都相等,左边梯形面积和右边梯形面积相等,所以图中阴影部分的面积正好为正方形面积的一半然后列式进行计算即可得解【详解】解:由图形可得:S448,所以阴影部分的面积为8故答案是:8【点睛】本题考查正方形的性质,轴对称的性质,将阴影面积转化为三角形面积是解题的关键,学会于转化的思想思考问题4、24【解析】【分析】由三边长之比得到三角
20、形的三条中位线之比,再由这三条中位线组成的三角形周长求出三中位线长,推出边长,再比大小判断即可【详解】 如图,H、I、J分别为BC,AC,AB的中点,又AB:AC:BC=4:5:6,即BC边最长故填24【点睛】本题考查了三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半5、24【解析】【分析】根据题意作图,得出四边形为菱形,再根据菱形的性质进行求解面积即可【详解】解:根据题意作图如下:由题意得四边形为菱形,且平分,由勾股定理:,故答案为:24【点睛】本题考查了菱形的判定及形,勾股定理,解题的关键是判断四边形是菱形三、解答题1、(1)见解析;(2)图中,图中【分析】(1)在上截取
21、,连接,可先证得,则,进而可证得AED为等腰直角三角形,即可得证;(2)仿照(1)的证明思路,作出相应的辅助线,即可证得对应的,与之间的数量关系【详解】解:(1)证明:如图,在上截取,连接四边形是正方形,ECF是等腰直角三角形,在中,;(2)图:,理由如下:如下图,在延长线上截取,连接四边形是正方形, ,ECF是等腰直角三角形, 在中,;图:如图,在DE上截取DF=BE,连接四边形是正方形,ECF是等腰直角三角形,在中, 【点睛】本题是四边形综合题,考查了正方形的性质、全等三角形的判定及性质、等腰直角三角形、勾股定理等相关知识,正确作出辅助线构造全等三角形是解决本题的关键2、见解析【分析】连接
22、,根据平行四边形的性质可得AO=OC,DO=OB,由M是AO的中点,N是CO的中点,进而可得MO=ON,进而即可证明四边形是平行四边形,即可得证【详解】如图,连接,四边形ABCD为平行四边形,AO=OC,DO=OBM为AO的中点,N为CO的中点,即MO=ON四边形是平行四边形,BMDN,BM=DN【点睛】本题考查了平行四边形的性质与判定,掌握平行四边形的性质与判定是解题的关键3、(1);(2)作图见详解;8;(3)在网格中作图见详解;31【分析】(1)根据网格可直接用割补法求解三角形的面积;(2)利用勾股定理画出三边长分别为、,然后依次连接即可;根据中图形,可直接利用割补法进行求解三角形的面积
23、;(3)根据题意在网格中画出图形,然后在网格中作出,进而可得,得出,进而利用割补法在网格中求解六边形的面积即可【详解】解:(1)ABC的面积为:,故答案为:;(2)作图如下(答案不唯一): 的面积为:,故答案为:8;(3)在网格中作出, 在与中,六边形AQRDEF的面积=正方形PQAF的面积+正方形PRDE的面积+的面积,故答案为:31【点睛】本题主要考查勾股定理、正方形的性质、割补法求解面积及二次根式的运算,熟练掌握勾股定理、正方形的性质、割补法求解面积及二次根式的运算是解题的关键4、(1)证明过程见解析;(2)BG的长为4;(3)2或64或或6+4【分析】(1)连结BB1交CG于点M,交C
24、D于点Q,证明四边形ABCD是正方形,再根据对称的性质得到CE垂直平分BB1,得到BCGB1CG(SSS),即可得解;(2)设BG交AD于点N,得到BCQCDE(ASA),得到CQDE5,BQCE5,再根据勾股定理得到BM,最后利用勾股定理计算即可;(3)根据点G的位置不同分4种情况进行讨论计算即可;【详解】(1)证明:如图1,连结BB1交CG于点M,交CD于点Q,ADBC,ADBC,四边形ABCD是平行四边形,BCDC,BCD90,四边形ABCD是正方形,点B1与点B关于CE对称,CE垂直平分BB1,BCB1C,BGB1G,CGCG,BCGB1CG(SSS),CBGCB1G,DCB1C,CD
25、B1CB1G,CBGCDB1(2)解:如图1,设BG交AD于点N,BCCDAD10,DEAD5,CDE90,CE,BCQCDEBMC90,CBQ90BCMDCE,BCQCDE(ASA),CQDE5,BQCE5,CMBQ,SBCQBQCMBCCQ,CM2,BM,ABCBAN90,GDN+CDB190,ABN+CBG90,GDNABN,GNDANB,GDN+GNDABN+ANB90,BGB190,BGMB1GMBGB145,BMG90,BMGBGM45,GMBM4,BG,BG的长为4(3)解:如图1,由(2)得CM2,GM4,CG2+46,如图2,CHCG6,则CHGCGH45,GCH90,GH,
26、BHGHBG642;如图3,HGCG6,且点H与点B在直线FB1的同侧,BHHGBG64;如图4,CHGH,则HCGHGC45,CHG90,CH2+GH2CG2,2GH2(6)2,GH3,BHBGGH43;如图5,HGCG6,且点H与点B在直线FB1的异侧,BHHG+BG6+4,综上所述,BH的长为2或64或或6+4,故答案为:2或64或或6+4【点睛】本题主要考查了全等三角形的综合,勾股定理,垂直平分线的判定与性质,正方形的性质,准确分析计算是解题的关键5、(1),证明见解析 ;(2)见解析【分析】(1)由正方形的性质可得OF=OE,OFAC,OEBC,由RtAOFRtAOD,可以推出OE=OD=OE,再由可得,由此即可得到答案;(2)根据(1)和题目已知可得,由此利用完全平方公式和平方差公式求解即可【详解】解:(1)如图所示,连接OC四边形OECF是正方形,OF=OE,OFAC,OEBC,RtAOFRtAOD,OF=OD,OE=OD=OE,ACB=90,即;(2),即【点睛】本题主要考查了正方形的性质,全等三角形的性质,平方差公式,完全平方公式,勾股定理的证明等等,解题的关键在于正确理解题意