《最新人教版九年级数学下册第二十六章-反比例函数专题测试试卷(含答案详细解析).docx》由会员分享,可在线阅读,更多相关《最新人教版九年级数学下册第二十六章-反比例函数专题测试试卷(含答案详细解析).docx(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版九年级数学下册第二十六章-反比例函数专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若点A(x1,1),B(x2,2),C(x3,3)在反比例函数(k0)的图象上,则x1,x2,x3的大小关
2、系是()Ax1x2x3Bx1x3x2Cx3x2x1Dx2x3x12、在反比例函数图象上有两点A(,)B(,),0,则m的取值范围是( )AmBmCmDm3、反比例函数与一次函数在同一坐标系中的大致图象可能是( )ABCD4、如图,点A是反比例函数图象上的一点,过点A作ACx轴,垂足为点C,D为AC的中点,若AOD的面积为1,则k的值为()A2B3C4D55、已知函数中,在每个象限内,y随x的增大而增大,那么它和函数ykx(k0)在同一直角坐标平面内的大致图象是()ABCD6、下列四个函数图象,一定不过原点的是()AyxByCyx2Dyx27、如图,和均为等腰直角三角形,且顶点A、C均在函数的图
3、象上,连结交于点E,连结若,则k的值为( )A B C4D8、对于反比例函数,下列说法正确的是( )A图象分布在第一、三象限内B图象经过点(1,2021)C当x0时,y随x的增大而增大D若点A(x1、y1),B(x2,y2)都在该函数的图象上,且x1x2,则y1y29、若,三点都在函数的图象上,则,的大小关系是( )ABCD10、已知是满足的整数使得反比例函数的图像在每一个象限内随着的增大而减小的概率是( )ABCD1第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、小明为研究函数y的图象,在2、1、1中任取一个数为横坐标,在2、1、2中任取一个数为纵坐标组成点P的坐标,
4、点P在函数y的图象上的概率是_2、若点都在反比例函数的图象上,则的从小到大的关系是_3、若反比例函数y,当x0时,y随着x的增大而增大,则k的取值范围是_4、如图,点M是函数y=x与y=的图象在第一象限内的交点,OM=8,则k的值为_ 5、在平面直角坐标系中,横坐标,纵坐标都为整数的点称为整点,正方形边长的整点称为边整点,如图,第一个正方形有4个边整点,第二个正方形有8个边整点,第三个正方形有12个边整点按此规律继续作下去,若从内向外共作了5个这样的正方形,那么其边整点的个数共有_个,这些边整点落在函数的图象上的概率是 _三、解答题(5小题,每小题10分,共计50分)1、已知函数y,小明研究该
5、函数的图象及性质时,列出y与x的几组对应值如下表:请解答下列问题:x-4-3-2-11234y124421(1)根据表格中给出的数值,在平面直角坐标系xOy中,指出以各对对应值为坐标的点,并画出该函数的图象;(2)写出该函数的两条性质: ; 2、如图,一次函数yx3的图象与反比例函数y(k0)在第一象限的图象交于A(1,a)和B两点,与x轴交于点C(1)求反比例函数的解析式和另一个交点B的坐标;(2)当x3时,请直接写出x的取值范围;(3)若点P为x轴上一动点,求PAPB的最小值3、如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,反比例函数在第一象限内的图象经过点A(6,8),
6、与BC交于点F(1)求反比例的解析式;(2)求的面积4、如图,正比例函数的图象与反比例函数的图象交于点,在中,点C坐标为(1)求k的值;(2)求点B的坐标5、如图,直线y=k1x+b与双曲线y=相交于A(1,2)、B(m,-1)两点(1)求直线和双曲线的函数表达式; (2)观察图象,请直接写出不等式k1x+b的解集;-参考答案-一、单选题1、D【分析】根据反比例函数的性质,直接判断x1,x2,x3的大小关系即可【详解】解:反比例函数(k0),函数图像在第一,三象限,且在每个象限内,y随x增大而减小,点A(x1,1),B(x2,2),C(x3,3)在反比例函数(k0)的图象上,x2x3x1,故选
7、:D【点睛】本题主要考查反比例函数上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答2、B【分析】对于反比例函数,由0,则A(,)B(,)在两个不同的象限,结合,可得A(,)在第三象限,B(,)在第一象限,从而可得13m0,解不等式可得答案.【详解】解: 反比例函数图象上有两点A(,)B(,),0, 13m0,解得: 故选B【点睛】本题考查的是反比例函数的图象与性质,数形结合是解本题的关键.3、A【分析】反比例函数y的图象位于第二、四象限,一次函数yx1的图象必过第一、三,四象限,且与y轴的交点在y轴负半轴上,根据以上两个特征即可确定结果【详解】解:y中的比例系数为-4反比例函
8、数y的图象位于第二、四象限,一次函数yx2中比例系数为正数1,一次函数yx2的图象必过第一、三象限,一次函数yx2中b=-2,一次函数yx2的图象还过第四象限,即一次函数yx2的图象过第一、三、四象限,满足题意的是选项A,故选A【点睛】本题考查了反比例函数与一次函数的图象与性质,在给定了反比例函数与一次函数的解析式后,根据它们的比例系数即可确定函数图象经过的象限,根据一次函数的b的符合可最后确定一次函数所经过的象限4、C【分析】根据题意可知AOC的面积为2,然后根据反比例函数系数k的几何意义即可求得k的值【详解】解:ACx轴,垂足为点C,D为AC的中点,若AOD的面积为1,AOC的面积为2,S
9、AOC|k|2,且反比例函数图象在第一象限,k4,故选:C【点睛】本题考查了反比例函数的比例系数k的几何意义:在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|5、B【分析】先根据反比例函数图象的性质判断出k的范围,再确定其所在象限,进而确定正比例函数图象所在象限即可解答【详解】解:函数中,在每个象限内,y随x的增大而增大,k0,双曲线在第二、四象限,函数ykx的图象经过第二、四象限,B选项满足题意故选:B【点睛】本题主要考查了反比例函数图象的性质与正比例函数图象的性质,掌握k对正比例函数和反比例函数图象的影响成为解答本题的关键6、B【分析】根据
10、正比例函数,反比例函数以及二次函数的性质对选项逐个判断即可【详解】解:A、,经过原点,不符合题意;B、,反比例函数,不经过原点,符合题意;C、,二次函数,经过原点,不符合题意;D、,经过原点,不符合题意;故选B【点睛】此题考查了正比例函数,反比例函数以及二次函数的性质,掌握它们的性质是解题的关键7、C【分析】先证明可得如图,过作轴于 利用等腰直角三角形的性质证明再利用反比例函数值的几何意义可得答案.【详解】解: 和均为等腰直角三角形, 如图,过作轴于 为等腰直角三角形, 反比例函数的图象在第一象限,则 故选C【点睛】本题考查的是等腰直角三角形的性质,反比例函数值的几何意义,掌握“反比例函数k值
11、的几何意义”是解本题的关键.8、C【分析】根据反比例函数解析式为,即可得到反比例函数图像经过二、四象限,且在每个象限内y随x增大而增大,由此即可判断,A、C、D;当x=1时,y=-2021,即可判断B【详解】解:反比例函数解析式为,反比例函数图像经过二、四象限,且在每个象限内y随x增大而增大,故A选项不符合题意;当x0时,y随x的增大而增大,故C选项符合题意;当x=1时,y=-2021,图象不经过点(1,2021),故B选项不符合题意;若点A(x1、y1),B(x2,y2)都在该函数的图象上,且x1x2,不一定y1y2,如A、B都在第四象限时,此时y1y2,故D选项不符合题意;故选C【点睛】本
12、题主要考查了反比例函数图像的性质,熟知反比例函数图像的性质是解题的关键9、A【分析】先根据反比例函数中k0判断出函数图象所在的象限,再根据各点横坐标的符号及函数图象的增减性进行解答即可【详解】解:函数中k0,此函数图象的两个分支分别在第一、三象限,-30,y10,1y30,故选A【点睛】本题考查了反比例函数的性质根据反比例函数的解析式判断出函数图象所在的象限是解题的关键10、B【分析】先求出不等式组的解集,再根据题意得出的值,最后根据反比例函数的性质求出满足题意的概率【详解】解:,解得:,为整数a的值为:-1,0,1,2,共4个整数,且满足随着的增大而减小,a的值只能为:1,2,共2个整数,满
13、足题意的的值且能使反比例函数满足随着的增大而减小的概率为,故选:B【点睛】本题主要考查了解不等式组以及反比例函数的性质和求概率得相关知识,熟练掌握解不等式组以及反比例函数的性质是解答本题的关键二、填空题1、【解析】【分析】先利用列表的方法求解所有的等可能的结果,再求解点P在函数上的有,共3种,从而可得答案.【详解】解:列表如下: 所有的等可能的结果有种,其中点P在函数上的有,共3种,所有点P在函数y的图象上的概率是 故答案为:【点睛】本题考查的是反比例函数的性质,利用列表法求解简单随机事件的概率,熟悉列表的方法求解概率是解题的关键.2、【解析】【分析】先根据反比例函数中k0判断出函数图象所在的
14、象限及增减性,再根据各点横坐标的特点即可得出结论【详解】解:反比例函数y中k0,函数图象的两个分支分别位于二、四象限,且在每一象限内y随x的增大而增大30,10,点A(3,y1),B(1,y2)位于第二象限,y10,y20,310,0y1y220,点C(2,y3)位于第四象限,y30,y3y1y2故答案为:【点睛】此题考查的是反比例函数图象上点的坐标特点及平面直角坐标系中各象限内点的坐标特点,比较简单3、k1【解析】【分析】若反比例函数y,当x0时,y随着x的增大而增大,即反比例系数1-k0时,y随着x的增大而增大,1-k1故答案为:k1【点睛】正确理解反比例函数的性质,能把函数的增减性与比例
15、系数的符号相结合解题,是最基本的要求4、【解析】【分析】作轴于,得出,在中,由勾股定理得出方程,解方程求出,得出,即可求出的值【详解】解:过点作轴,垂足为点,设,把代入中,得,由勾股定理,得,即,解得(负值舍去)把代入,得,故答案是:【点睛】本题考查了反比例函数与一次函数的图象得交点、勾股定理、反比例函数解析式的求法,解题的关键是求出点的坐标是解决问题的关键5、【解析】【分析】利用整点的个数与正方形的序号数的关系可得到第四个正方形有44个边整点,第五个正方形有54个边整点,则可计算出其边整点的个数为60个,然后根据反比例函数图象上点的坐标特征可确定这些边整点落在函数的图象上的个数,再利用概率公
16、式求解【详解】解:第一个正方形有14个边整点, 第二个正方形有24个边整点, 第三个正方形有34个边整点, 第四个正方形有44个边整点, 第五个正方形有54个边整点, 所以其边整点的个数共有 4+8+12+16+20=60个, 这些边整点落在函数的图象上的有(1,4),(4,1),(2,2),(-1,-4),(-4,-1),(-2,-2), 所以些边整点落在函数的图象上的概率= 故答案为60,【点睛】本题考查了简单随机事件的概率,利用例举法得到所有等可能的结果数为n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率也考查了解决规律型问题的方法和反比例函数图象上点的坐标
17、特征三、解答题1、(1)见解析;(2)该函数的两条性质:图象关于y轴对称,当时,随的增大而增大;当时,随的增大而减小【分析】(1)利用描点法画出函数的图象;(2)根据函数图象得到该函数的性质【详解】(1)如图:(2)该函数的两条性质:图象关于y轴对称,当时,随的增大而增大;当时,随的增大而减小【点睛】本题考查了反比例函数的图象和性质,正确画出函数的图象是解题的关键2、(1);(,);(2)或;(3)【分析】(1)将点(1,)代入一次函数中,求出的值,然后把点坐标代入反比例函数中,求出反比例函数解析式,再与一次函数联立解方程即可求出点坐标(2)利用函数图像,图像在上面的函数值大于下面的函数值,即
18、可解答(3)作点关于轴的对称点,连接,即可确定点的位置,则的最小值等于的长,再利用两点间距离公式即可求解【详解】(1)一次函数与反比例函数交于点(1,)和点点的坐标为(1,),代入中反比例函数的解析式为:解得:,将代入中,解得的坐标为(,)(2)一次函数与反比例函数交于点(1,)和点(,),结合图像可得:的解集为或(3)如图:作点关于轴的对称点,连接,则与轴的点即为点的位置,则此时的和最小,即线段的长点坐标为(,),点的坐标为(,)点的坐标为(1,),【点睛】本题考查了反比例函数与一次函数的交点问题,利用待定系数法求函数解析式,以及最短路径问题,解题关键是熟练利用待定系数法求函数解析式,利用图
19、像求不等式的解集,以及利用轴对称求最短路径3、(1)反比例函数;(2)SAOF=【分析】(1)利用待定系数法求反比列函数解析式,把点A坐标代入解析式得,求出k即可;(2)过A作ADOB于D,FGAO于G,根据勾股定理求出菱形边长OA,再求菱形面积,根据三角形面积是菱形面积的一半即可求解【详解】解:(1)反比例函数在第一象限内的图象经过点A(6,8),解得,反比例函数;(2)过A作ADOB于D,FGAO于G,A(6,8),AD=8,OD=6,OA四边形OACB是菱形,OB=OA=10,S菱形OBCA=OBAD=108=80,SAOF=【点睛】本题考查待定系数法求分别列函数解析式,勾股定理求菱形边
20、长,菱形性质,菱形面积,三角形面积,掌握待定系数法求分别列函数解析式,勾股定理求菱形边长,菱形性质,菱形面积,三角形面积是解题关键4、(1)1;(2)【分析】(1)先求得A的坐标,然后根据待定系数法即可求得k的值;(2)作ADx轴于D,BEx轴于E,通过证得BCECAD,求得B(-3,3)【详解】解:(1)正比例函数y=x的图象经过点A(1,a),a=1,A(1,1),点A在反比例函数的图象上,k=11=1;(2)作ADx轴于D,BEx轴于E,A(1,1),C(-2,0),AD=1,CD=3,ACB=90,ACD+BCE=90,ACD+CAD=90,BCE=CAD,在BCE和CAD中,BCEC
21、AD(AAS),CE=AD=1,BE=CD=3,B(-3,3),【点睛】本题是反比例函数与一次函数的交点问题,考查了一次函数图象上点的坐标特征,待定系数法求一次函数的解析式,全等三角形的判定和性质是解题的关键5、(1);y=x+1;(2)x1或-2x0【分析】(1)先把A点坐标代入y求出k22,得到双曲线的解析式为y,再把B(m,1)代入y确定B点坐标,然后利用待定系数法确定一次函数的解析式;(2)观察函数图象得到当x1或2x0时,一次函数图象都在反比例函数图象上方,即k1xb【详解】解:(1)双曲线y经过点A(1,2),k22,双曲线的解析式为y;点B(m,1)在双曲线y上,m2,B点坐标为(2,1),把点A(1,2),B(2,1)代入yk1xb,解得,直线的解析式为:yx1; (2)由图可知x1或2x0【点睛】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式也考查了待定系数法求函数解析式以及观察函数图象的能力