《2022年最新精品解析沪科版九年级数学下册第26章概率初步专题训练练习题(精选含解析).docx》由会员分享,可在线阅读,更多相关《2022年最新精品解析沪科版九年级数学下册第26章概率初步专题训练练习题(精选含解析).docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、沪科版九年级数学下册第26章概率初步专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列事件是随机事件的是( )A抛出的篮球会下落B经过有交通信号灯的路口,遇到红灯C任意画一个三角形,其内角和是D
2、400人中有两人的生日在同一天2、下列事件是必然事件的是()A明天一定是晴天B购买一张彩票中奖C小明长大会成为科学家D13人中至少有2人的出生月份相同3、同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率是( )ABCD4、书架上有本小说、本散文,从中随机抽取本恰好是小说的概率是( )ABCD5、下列事件中,属于必然事件的是()A射击运动员射击一次,命中10环B打开电视,正在播广告C投掷一枚普通的骰子,掷得的点数小于10D在一个只装有红球的袋中摸出白球6、甲、乙两位同学在一次用频率去估计概率的实验中统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的实验可能是()A掷一枚正六面
3、体的骰子,出现1点的概率B一个袋子中有2个白球和1个红球,从中任取一个球,则取到红球的概率C抛一枚硬币,出现正面的概率D任意写一个整数,它能被2整除的概率7、某林业部门要考察某幼苗的成活率,于是进行了试验,表中记录了这种幼苗在一定条件下移植的成活情况,则下列说法不正确的是()移植总数n400150035007000900014000成活数m369133532036335807312628成活的频率0.9230.8900.9150.9050.8970.902A在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率B可以用试验次数累计最多时的频率作为概率的估计值C
4、由此估计这种幼苗在此条件下成活的概率约为0.9D如果在此条件下再移植这种幼苗20000株,则必定成活18000株8、下列判断正确的是( )A明天太阳从东方升起是随机事件;B购买一张彩票中奖是必然事件;C掷一枚骰子,向上一面的点数是6是不可能事件;D任意画一个三角形,其内角和是360是不可能事件;9、掷一枚质地均匀的骰子,向上一面的点数大于2且小于5的概率是( )ABCD10、把形状完全相同风景不同的两张图片全部从中剪断,再把四张形状相同的小图片混合在一起,从四张图片中随机摸取两张,则这两张小图片恰好合成一张完整图片的概率为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共
5、计20分)1、在一个不透明的袋子里装有红球和白球共30个,这些球除颜色外其余都相同小明通过多次试验发现,摸出白球的频率稳定在0.3左右,则袋子里可能有 _个红球2、不透明的袋子里装有一个黑球,两个红球,这些球除颜色外无其它差别,从袋子中取出一个球,不放回,再取出一个球,记下颜色,两次摸出的球是一红黑的概率是_3、在发展现代化农业的形势下,现有A、B两种新玉米种子,为了了解它们的出芽情况,在推广前做了五次出芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:种子数量10030050010003000A出芽率0.990.940.960.980.97B出芽率0.990.9
6、50.940.970.96下面有三个推断:当实验种子数量为100时,两种种子的出芽率均为0.99,所以A、B两种新玉米种子出芽的概率一样;随着实验种子数量的增加,A种子出芽率在 0.97附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.97;在同样的地质环境下播种,A种子的出芽率可能会高于B种子其中合理的是_4、真实惠举行抽奖活动,在一个封闭的盒子里有400张形状一模一样的纸片,其中有20张是一等奖,摸到二等奖的概率是10,摸到三等奖的概率是20%,剩下是“谢谢惠顾”,则盒子中有“谢谢惠顾”_张5、不透明袋子中装有1个红球和2个黄球,这些球除颜色外无其他差别从袋子中随机摸出1个球,摸
7、出红球的概率是 _ 三、解答题(5小题,每小题10分,共计50分)1、圣诞节快到了,已知东方商城推出A,B,C,D四种礼盒套餐,甲乙两人任选其中一种购买(1)甲从中随机选取A套餐的概率是 ;(2)甲乙分别选取一种套餐,请画出树状图(或列表),并求甲、乙2人选取相同套餐的概率2、在33的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上(1)如果只能沿着图中实线向右或向下走,则从点A走到点E有 条不同的路线(2)先从A、B、C中任意取一点,再从D、E、F中任选两个点,用这三个点组成三角形,用树状图或列表的方法求所画三角形是直角三角形的概率3、从一副52张(没有大小王)的扑克牌中
8、,每次抽出1张,然后放回洗匀再抽,在试验中得到下列表中部分数据:试验次数4080120160200240280320360400出现方块的次数1118a404963688091100出现方块的频率0.2750.2250.2500.2500.2450.2630.243b0.2530.250(1)将数据表a、b补充完整;(2)从上表中可以估计出现方块的概率是_;(3)从这副扑克牌中取出两组牌,分别是方块1,2,3和红桃1,2,3,将它们背面朝上分别重新洗匀后,从两组牌中各摸出一张,若摸出的两张牌的牌面数字之和等于3,则甲方赢;若摸出的两张牌的牌面数字之和等于4,则乙方赢你认为这个游戏对双方是公平的
9、吗若不是,有利于谁请你用概率知识(列表或画树状图)加以分析说明4、从一副普通的扑克牌中取出四张牌,它们的牌面数字分别为将这四张扑克牌背面朝上,洗匀(1)从中随机抽取一张,则抽取的这张牌的牌面数字能被3整除的概率是_;(2)从中随机抽取一张,不放回,再从剩余的三张牌中随机抽取一张利用画树状图或列表的方法,写出取出的两张牌的牌面数字所有可能的结果;求抽取的这两张牌的牌面数字之和是偶数的概率5、随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷在一次购物中,小明和小亮都想从“微信”“支付宝”“银行卡”三种支付方式中选一种方式进行支付,“微信”“支付宝”“银行卡”这三种支付方式分别用“A”
10、“B”“C”表示,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率-参考答案-一、单选题1、B【分析】根据事件的确定性和不确定性,以及随机事件的含义和特征,逐项判断即可【详解】A.抛出的篮球会下落是必然事件,故此选项不符合题意;B.经过有交通信号灯的路口,遇到红灯是随机事件,故此选项符合题意; C.任意画一个三角形,其内角和是是不可能事件,故此选项不符合题意;D. 400人中有两人的生日在同一天是必然事件,故此选项不符合题意;故选B【点睛】此题主要考查了事件的确定性和不确定性,要熟练掌握,解答此题的关键是要明确:事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和
11、不可能事件2、D【分析】必然事件是在一定条件下,一定会发生的事件;根据定义对选项进行判断,得出结果【详解】解:A、B、C选项中的事件都是随机事件,不符合要求;D选项中13人中至少有2人的出生月份相同是必然事件,符合要求;故选D【点睛】本题考查了必然事件解题的关键在于正确理解必然事件与随机事件的定义3、A【分析】首先利用列举法可得所有等可能的结果有:正正,正反,反正,反反,然后利用概率公式求解即可求得答案【详解】解:抛掷两枚质地均匀的硬币,两枚硬币落地后的所有等可能的结果有:正正,正反,反正,反反,正面都朝上的概率是:.故选A【点睛】本题考查了列举法求概率的知识此题比较简单,注意在利用列举法求解
12、时,要做到不重不漏,注意概率=所求情况数与总情况数之比4、D【分析】概率=所求情况数与总情况数之比,再分析可得:总的情况数有5种,而随机抽取刚好是小说的情况数有3种,利用概率公式可得答案.【详解】解:书架上有本小说、本散文,共有本书,从中随机抽取本恰好是小说的概率是;故选:D【点睛】本题考查的是简单随机事件的概率,掌握“概率公式求解简单随机事件的概率”是解本题的关键.5、C【分析】根据事件发生的可能性大小判断即可【详解】解:A、射击运动员射击一次,命中10环,是随机事件;B、打开电视,正在播广告,是随机事件;C、投掷一枚普通的骰子,掷得的点数小于10,是必然事件;D、在一个只装有红球的袋中摸出
13、白球,是不可能事件;故选:C【点睛】本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件6、B【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P0.33,计算四个选项的概率,约为0.33者即为正确答案【详解】解:A、掷一枚正六面体的骰子,出现1点的概率为,故此选项不符合题意;B、一个袋子中有2个白球和1个红球,从中任取一个球,则取到红球的概率0.33,故此选项符合题意;C、掷一枚硬币,出现正面朝上的概率为,故此选项不符合题意;D、任意写出
14、一个整数,能被2整除的概率为,故此选项不符合题意故选:B【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率用到的知识点为:频率=所求情况数与总情况数之比同时此题在解答中要用到概率公式7、D【分析】根据频率估计概率逐项判断即可得【详解】解:A在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率,则此选项说法正确;B可以用试验次数累计最多时的频率作为概率的估计值,则此选项说法正确;C由此估计这种幼苗在此条件下成活的概率约为0.9,则此选项说法正确;D如果在此条件下再移植这种幼苗20000株,则大约成活18000株,则此选项说法错误;故选:D【点睛
15、】本题考查了频率估计概率,掌握理解利用频率估计概率是解题关键8、D【详解】解:A、明天太阳从东方升起是必然事件,故本选项错误,不符合题意;B、购买一张彩票中奖是随机事件,故本选项错误,不符合题意;C、掷一枚骰子,向上一面的点数是6是随机事件,故本选项错误,不符合题意;D、任意画一个三角形,其内角和是360是不可能事件,故本选项正确,符合题意;故选:D【点睛】本题考查的是对必然事件的概念的理解,熟练掌握必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件是解题的关键9、C【分析】根据骰子各面上的数字得到向上一面的点数可能是3或4,利用概率公式计算
16、即可【详解】解:一枚质地均匀的骰子共有六个面,点数分别为1,2,3,4,5,6,点数大于2且小于5的有3或4,向上一面的点数大于2且小于5的概率是=,故选:C【点睛】此题考查了求简单事件的概率,正确掌握概率的计算公式是解题的关键10、B【分析】设四张小图片分别用A,a,B,b表示,画树状图,然后根据树状图找出满足条件的结果即可得出概率【详解】解:设四张小图片分别用A,a,B,b表示,画树状图得:由图可得,共有12种等可能的结果,其中摸取两张小图片恰好合成一张完整图片的结果共有4种,摸取两张小图片恰好合成一张完整图片的概率为:,故选:B【点睛】题目主要考查利用树状图或列表法求概率问题,理解题意,
17、熟练运用树状图或列表法是解题关键二、填空题1、21【分析】根据大量反复试验下频率的稳定值即为概率,即可用球的总数乘以白球的频率,可求得白球数量,从而得到红球的熟练【详解】解:小明通过多次试验发现,摸出白球的频率稳定在0.3左右,白球的个数=300.3=9个,红球的个数=30-9=21个,故答案为:21【点睛】本题主要考查利用频率估计概率,大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率2、【分析】根据题意列出表格,可得6种等可能结果,其中一红黑的有4种,再利用概率公式,即可求
18、解【详解】解:根据题意列出表格如下:黑球红球1红球2黑球红球1、黑球红球2、黑球红球1黑球、红球1红球2、红球1红球2黑球、红球2红球1、红球2得到6种等可能结果,其中一红黑的有4种,所以两次摸出的球是一红黑的概率是 故答案为:【点睛】本题主要考查了求概率,能够利用画树状图或列表格的方法解答是解题的关键3、【分析】大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率,据此解答可得【详解】在大量重复试验时,随着试验次数的增加,可以用一个事件出现的概率估计它的概率,实验种子数量为10
19、0,数量太少,不可用于估计概率,故推断不合理;随着实验种子数量的增加,A种子出芽率在0.97附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.97,故推断合理;在同样的地质环境下播种,A 种子的出芽率约为0.97,B种子的出芽率约为0.96,种子的出芽率可能会高于种子,故正确,故答案为:【点睛】此题考查利用频率估计概率,理解随机事件发生的频率与概率之间的关系是解题的关键4、260【分析】先求出一等奖的概率,然后利用频数=总数概率求解即可【详解】解:由题意得:一等奖的概率=,盒子中有“谢谢惠顾”张,故答案为:260【点睛】本题主要考查了利用概率求频数,解题的关键在于能够熟练掌握频数=总
20、数概率5、【分析】先确定事件的所有等可能性,再确定被求事件的等可能性,根据概率计算公式计算即可【详解】事件的所有等可能性有1+2=3种,摸出红球事件的等可能性有1种,摸出红球的概率是,故答案为:【点睛】本题考查了简单概率的计算,熟练掌握概率计算公式是解题的关键三、解答题1、(1);(2)【分析】(1)直接根据概率公式求解即可;(2)画树状图展示所有16种等可能的情况数,找出符合条件的结果数,然后根据概率公式求解【详解】解:(1)由题意,推出A,B,C,D四种礼盒套餐,甲从中随机选取A套餐的概率是;故答案为:(2)根据题意,画树状图为:共有16种等可能的情况数,其中甲乙两人选择相同套餐的有4种,
21、甲、乙2人选取相同套餐的概率为:【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率2、(1)6;(2)【分析】(1)根据题意只能沿着图中实线向右或向下走,枚举所有可能即可求解;(2)根据网格的特点判断直角三角形,根据列表法求得概率【详解】(1)如图,从点出发,只能向右或向下,先向右的路线为:,,先向下的路线为:,共6条路线故答案为:6(2)列表如下,ABCD、EADEBDECDED、FADFBDFCDFE、FAEFBEFCEF根据列表可知共有9种等可能情况,只有CDE,CDF, CEF
22、是直角三角形则所画三角形是直角三角形的概率为【点睛】本题考查了枚举法,列表法求概率,掌握列举法和列表法求概率是解题的关键3、(1)30,0.250;(2);(3)这个游戏对双方是不公平的,有利于乙方,说明见解析【详解】(1)根据频数总数频率,频率频数总数计算,补全即可;(2)概率是题目中比较稳定在的那个数,观察(1)中表格可得到答案;(3)游戏是否公平,关键要看是否游戏双方赢的概率相同,本题中即甲方赢或乙方赢的概率是否相等,求出概率比较,即可得出结论【分析】解:(1)由题意得:,填表如下所示:试验次数4080120160200240280320360400出现方块的次数1118a4049636
23、88091100出现方块的频率0.2750.2250.2500.2500.2450.2630.243b0.2530.250(2)从表中得出,出现方块的频率稳定在0.250附近,故可以估计出现方块的概率为;(3)列表如下:红桃123方块123423453456由表可知所有等可能的结果有9种,其中甲方赢的结果有2种,乙方赢的结果有3种,甲方赢,乙方赢,乙方赢甲方赢,这个游戏对双方是不公平的,有利于乙方【点睛】本题主要考查了求频率,根据频率估计概率,游戏公平性,解题的关键在于能够熟练掌握相关知识进行求解4、(1)(2)见解析;【分析】(1)直接由概率公式求解即可;(2)列表,共有12种等可能的结果,
24、抽取的这两张牌的牌面数字之和是偶数的结果有4种,再由概率公式求解即可(1)共有四张牌,它们的牌面数字分别为3,4,6,9,其中抽取的这张牌的牌面数字能被3整除的有3种,从中随机抽取一张,则抽取的这张牌的牌面数字能被3整除的概率是故答案为:(2) 根据题意,列表如下:第一次第二次34693(4,3)(6,3)(9,3)4(3,4)(6,4)(9,4)6(3,6)(4,6)(9,6)9(3,9)(4,9)(6,9)所有可能产生的全部结果共有种抽取的这两张牌的牌面数字之和是偶数的结果有4种抽取的这两张牌的牌面数字之和是偶数的概率 【点睛】此题考查的是画树状图或列表法求概率树状图或列表法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验用到的知识点为:概率=所求情况数与总情况数之比5、【分析】根据题意画出树状图,然后由树状图求得所有等可能的结果与两人恰好选择同一种支付方式的情况,再利用概率公式即可求得答案【详解】解:画树状图如下:共有9种等可能的结果,其中两人恰好选择同一种支付方式的有3种,两人恰好选择同一种支付方式的概率为【点睛】本题考查了树状图法与列表法求概率,用到的知识点为:概率=所求情况数与总情况数之比