中考专题特训浙教版初中数学七年级下册第五章分式综合训练试题(无超纲).docx

上传人:可****阿 文档编号:30737833 上传时间:2022-08-06 格式:DOCX 页数:16 大小:223.80KB
返回 下载 相关 举报
中考专题特训浙教版初中数学七年级下册第五章分式综合训练试题(无超纲).docx_第1页
第1页 / 共16页
中考专题特训浙教版初中数学七年级下册第五章分式综合训练试题(无超纲).docx_第2页
第2页 / 共16页
点击查看更多>>
资源描述

《中考专题特训浙教版初中数学七年级下册第五章分式综合训练试题(无超纲).docx》由会员分享,可在线阅读,更多相关《中考专题特训浙教版初中数学七年级下册第五章分式综合训练试题(无超纲).docx(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、初中数学七年级下册第五章分式综合训练(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、计算:22(1)0( )A4B5CD2、据报道,新型冠状病毒的直径约为100纳米,1纳米=0.000000001米,则该病毒的直径用科学记数法表示为( )A米B米C米D米3、肥皂泡的泡壁厚度大约是0.00000071米,数字0.00000071用科学记数法表示为()A7.1109B7.1108C7.1107D7.11064、冠状病毒的一个变种是非典型肺炎的病原体,某种球形冠状病毒的直径是120纳米,1纳米10

2、9米,则这种冠状病毒的半径用科学记数法表示为()A1.2107米B1.21011米C0.61011米D6108米5、新型冠状病毒属冠状病毒属,冠状病毒科,体积很小,最大直径不超过140纳米(即0.00000014米)用科学记数法表示0.00000014,正确的是()A1.4107B1.4107C0.14106D141086、计算的结果为( )A1BCD7、下列各式与相等的是( )AB-2C2D8、已知关于x的分式方程1无解,则m的值是( )A2B3C2或3D0或39、关于的分式方程有解,则字母的取值范围是( )A或BCD且10、下列运算正确的是()Ax2B(x3)2x5C(xy)3x3y3Dx

3、6x2x3二、填空题(5小题,每小题4分,共计20分)1、已知,则_2、若,则的值为_3、如图,一个长宽高分别为,的长方体纸箱装满了一层高为的圆柱形易拉罐,则纸箱空间的利用率=_(易拉罐总体积与纸箱容积的比,结果精确到0.1%)4、一项工作由甲单独做,需天完成;如果由甲、乙两人合作,则可提前2天完成,则乙单独完成该项工作需要的天数为_天5、_三、解答题(5小题,每小题10分,共计50分)1、解方程:(1);(2)2、(1)计算:;(2)计算:(2x2y)23xy(6x2y)3、计算:4、某社区拟建A,B两类摊位以搞活“地摊经济”,每个摊位的占地面积A类比B类多2平方米建A类,B类摊位每平方米的

4、费用分别为40元,30元若用60平方米建A类或B类摊位,则A类摊位的个数恰好是B类摊位个数的(1)求每个A,B类摊位的占地面积(2)已知该社区规划用地70平方米建摊位,且刚好全部用完请写出建A,B两类摊位个数的所有方案,并说明理由请预算出该社区建成A,B两类摊位需要投入的最大费用5、计算:(1)(2)-参考答案-一、单选题1、C【分析】直接利用负指数幂的性质和零指数幂的性质分别化简进而得出答案【详解】解:原式=故选C【点睛】此题主要考查了实数运算,正确化简各数是解题关键2、B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负整数

5、指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:100纳米米米,故选B【点睛】本题考查了用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定3、C【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正整数;当原数的绝对值1时,n是负整数【详解】解:0.000000717.1107故选:C【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|

6、10,n为整数,表示时关键要确定a的值以及n的值4、D【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a10n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:1202(纳米)60109米6108米故选:D【点睛】考核知识点:科学记数法理解科学记数法的规则是关键5、B【分析】根据题意,运用科学计数法的表示方法可直接得出答案,要注意绝对值小于1的数字科学计数法的表示形式为:,其中,n为正整数,n的值由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.00000014用科学记数法表示为,故选:B【

7、点睛】本题考查了科学计数法的表示方法,属于基础题,正确确定中和的值是解决本题的关键6、B【分析】先把分母2a变形为(a2),即通分,再按分式的加减运算法则计算即可【详解】解:原式=;故选:B【点睛】此题考查的是分式的加减运算,化为同分母进行计算是解决此题关键7、D【分析】根据负指数幂可直接进行求解【详解】解:由题意得:;故选D【点睛】本题主要考查负指数幂,熟练掌握负指数幂的算法是解题的关键8、C【分析】分式方程去分母转化为整式方程,由分式方程无解确定出x的值,代入整式方程计算即可求出m的值【详解】解:两边都乘以x(x3),得:x(x+m)x(x3)x3,整理,得:(m+2)x3,解得:,当m+

8、20,即m2时整数方程无解,即分式方程无解,关于x的分式方程1无解,或,即无解或3(m+2)3,解得m2或3m的值是2或3故选C【点睛】本题考查了解分式方程,分式方程的解,解题的关键是熟练掌握解分式方程的方法,注意分母不等于0的条件9、D【分析】先解关于x的分式方程,求得x的值,然后再依据“关于x的分式方程有解”,即x0且x2建立不等式即可求a的取值范围【详解】解:,去分母得:5(x-2)=ax,去括号得:5x-10=ax,移项,合并同类项得:(5-a)x=10,关于x的分式方程有解,5-a0,x0且x2,即a5,系数化为1得:,且,即a5,a0,综上所述:关于x的分式方程有解,则字母a的取值

9、范围是a5,a0,故选:D【点睛】此题考查了求分式方程的解,由于我们的目的是求a的取值范围,根据方程的解列出关于a的不等式另外,解答本题时,容易漏掉5-a0,这应引起同学们的足够重视10、C【分析】根据负整指数幂,幂的乘方运算,积的乘方,同底数幂的除法逐项分析即可【详解】A. x2,故该选项不正确,不符合题意;B. (x3)2x6,故该选项不正确,不符合题意;C. (xy)3x3y3,故该选项正确,符合题意;D. x6x2x4,故该选项不正确,不符合题意;故选C【点睛】本题考查了负整数指数幂,幂的乘方运算,积的乘方,同底数幂的除法,掌握以上运算法则是解题的关键二、填空题1、-1【分析】根据得出

10、,然后根据分式的性质代入即可求解【详解】解:由题意可知,故答案为:-1【点睛】此题考查了绝对值的性质,分式的性质,解题的关键是熟练掌握绝对值的性质,分式的性质2、【分析】根据多项式的乘法计算,根据一次项系数和常数项确定的值,进而求得代数式的值【详解】解得故答案为:【点睛】本题考查了多项式的乘法,负整指数幂,解二元一次方程组,掌握多项式的乘法运算是解题的关键3、【分析】根据题意分别算出纸箱的体积和易拉罐的体积,根据易拉罐总体积与纸箱容积的比求得利用率【详解】设沿长边摆放了个易拉罐,沿宽摆放了个易拉罐,则,每个易拉罐的体积=,所以长方体纸箱中圆柱形易拉罐所占的总体积,又因为长方体纸盒的体积= ,所

11、以纸箱空间的利用率为故答案为:【点睛】本题考查了分式的应用,掌握分式的计算是解题的关键4、【分析】设总工作量为单位“1”,由工作效率=工作总量工作时间可求得甲乙两人的合作效率,然后求得乙的工作效率,从而求解【详解】一项工作由甲单独做,需a天完成,甲的工作效率为,又由甲、乙两人合作,则可提前2天完成,甲、乙的合作效率为,乙的工作效率为,乙单独完成该项工作需要的天数为,故答案为: 【点睛】本题考查列分式以及分式的混合运算,解题的关键是掌握分式混合运算的计算法则及工程问题中“工作效率工作时间=工作总量”的等量关系5、-4【分析】首先根据5次方根和零指数幂的运算法则计算,然后根据有理数的加减运算法则求

12、解即可【详解】解:原式故答案为:【点睛】此题考查了5次方根和零指数幂的运算,解题的关键是熟练掌握5次方根和零指数幂的运算法则三、解答题1、(1)x4;(2)x2【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【详解】解:(1)方程两边同时乘以x2得x3+x23,解整式方程得,x4,检验:当x4时,x20x4是原方程的解(2)方程两边同时乘以(x1)(2x+3)得:2x2x62(x2)(x1),整理得:5x10,解得:x2,检验:当x2时,(x1)(2x+3)0,分式方程的解为x2【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验2

13、、(1)17;(2)-2 x3y2【分析】(1)先算负整数指数幂,零指数幂,绝对值和乘方,再算加减法;即可求解;(2)先算积的乘方再算单项式的乘除法,即可求解【详解】解:(1)原式=17;(2)原式=4x4y23xy(6x2y)=12x5y3(6x2y)=-2 x3y2【点睛】本题主要考查实数的混合运算以及整式的混合运算,掌握负整数指数幂,零指数幂以及单项式的乘除法法则,是解题的关键3、【分析】先把各个分式的分子、分母因式分解,根据分式的除法法则、约分法则计算即可【详解】解:原式【点睛】本题考查了分式的化简,熟练掌握约分,灵活进行因式分解是解题的关键4、(1)每个A类摊位的占地面积为5平方米,

14、则每个A类摊位的占地面积为3平方米;(2)见解析;2650元【分析】(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位的占地面积为(x+2)平方米,由题意:若用60平方米建A类或B类摊位,则A类摊位的个数恰好是B类摊位个数的列出分式方程,解方程即可;(2)设建A类摊位a个,B类摊位b个,由题意:该社区规划用地70平方米建摊位,且刚好全部用完列出二元一次方程,求出正整数解即可;求出建成A、B两类摊位需要投入的费用为-30b+2800,b越小,费用越大,即可求解【详解】解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位的占地面积为(x+2)平方米,由题意得:,解得:x=3,经检验,

15、x=3是原方程的解,则x+2=5,答:每个A类摊位的占地面积为5平方米,则每个A类摊位的占地面积为3平方米;(2)有4个方案,理由如下:设建A类摊位a个,B类摊位b个,由题意得:5a+3b=70,则a=14-b,a、b为正整数,或或或,共有4个方案:A类摊位11个,B类摊位5个;A类摊位8个,B类摊位10个;A类摊位5个,B类摊位15个;A类摊位2个,B类摊位20个;建成A、B两类摊位需要投入的费用为:405a+303b=200(14-b)+90b=-30b+2800,b越小,费用越大,当b=5时,费用最大值=-305+2800=2650(元),即该社区建成A、B两类摊位需要投入的最大费用为2650元【点睛】本题考查了分式方程的应用、二元一次方程的应用等知识;找准等量关系,列出分式方程和二元一次方程是解题的关键5、(1);(2)【分析】(1)直接利用度分秒换算法则计算得出答案;(2)直接利用同底数幂的乘除运算法则计算得出答案【详解】解:(1)原式(2)原式【点睛】此题主要考查了同底数幂的乘除运算、度分秒换算,正确掌握相关运算法则是解题关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁