《2022年最新精品解析北师大版七年级数学下册第五章生活中的轴对称专项测评试题(含答案及详细解析).docx》由会员分享,可在线阅读,更多相关《2022年最新精品解析北师大版七年级数学下册第五章生活中的轴对称专项测评试题(含答案及详细解析).docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、七年级数学下册第五章生活中的轴对称专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列所述图形中,不是轴对称图形的是( )A矩形B平行四边形C正五边形D正三角形2、下列图形中,不一定是轴对称图形的
2、是( )A直角三角形B等腰三角形C等边三角形D正方形3、如图,ABC与ABC关于直线MN对称,BB交MN于点O,则下列结论不一定正确的是()AACACBBOBOCAAMNDABBC4、下列图形中不是轴对称图形的是( )ABCD5、下列图案中,不是轴对称图形的为( )ABCD6、在千家万户团圆的时刻,我市一批医务工作者奔赴武汉与疫情抗争,他们是“最美逆行者”.下列艺术字中,可以看作是轴对称图形的是( )A BCD7、下列图形是四家电信公司的标志,其中是轴对称图形的是()ABCD8、下列垃圾分类的标识中,是轴对称图形的是( )ABCD9、如图所示图形中轴对称图形是( )ABCD10、下列图形中,不
3、是轴对称图形的是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,点P为AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=18,则PMN的周长为_2、成轴对称的两个图形的主要性质是:(1)成轴对称的两个图形是_(2)如果两个图形关于某条直线对称,那么对称轴是任何一对_的垂直平分线3、如图,一束水平光线照在有一定倾斜角度的平面镜上,若入射光线与反射光线的夹角为50,则平面镜与水平地面的夹角的度数是_4、小聪在研究题目“如图,在等腰三角形ABC中,的平分线与AB的垂直平分线OD交于点O,点C沿直线EF折
4、叠后与点O重合,你能得出那些结论?”时,发现了下面三个结论:;图中没有60的角;D、O、C三点共线请你直接写出其中正确的结论序号:_5、如图,直线MN是四边形AMBN的对称轴,点P是直线MN上的一点,写请出一个正确的结论_三、解答题(5小题,每小题10分,共计50分)1、如图,方格子的边长为1,ABC的顶点在格点上(1)画出ABC关于直线l对称的A1B1C1; (2)在直线l上找一点P,使PB+PC最小;(3)求ABC的面积2、已知:如图,AD是ABC的角平分线,DEAC,DE交AB于点E,DFAB,DF交AC于点F求证:DA平分EDF3、如图1,在正方形网格中,有5个黑色的小正方形,现要求:
5、移动其中的一个(只能移动一个)小正方形,使5个黑色的小正方形组成一个轴对称图形(范例:如图12所示)请你在图3中画出四个与范例不同且符合要求的图形4、在33的正方形网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形图中是一个格点三角形.请在图1和图2中各画出一个与成轴对称的格点三角形,并画出对称轴5、(1)如图1,直线两侧有两点A,B,在直线上求一点C,使它到A、B两点的距离之和最小(作法不限,保留作图痕迹,不写作法)(2)知识拓展:如图2,直线同侧有两点A,B,在直线上求一点C,使它到A,B两点的距离之和最小(作法不限,保留作图痕迹,不写作法)-参考答案-一、单选题1、B【分析】
6、由轴对称图形的定义对选项判断即可【详解】矩形为轴对称图形,不符合题意,故错误;平行四边形不是轴对称图形,符合题意,故正确; 正五边形为轴对称图形,不符合题意,故错误;正三角形为轴对称图形,不符合题意,故错误;故选:B【点睛】本题考查了轴对称图形的概念,如果一个平面图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形识别轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合2、A【分析】根据轴对称图形的概念求解即可【详解】解:根据轴对称的定义,等腰三角形、等边三角形、正方形一定是轴对称图形,直角三角形不一定是轴对称图形,故选:A【点睛】本题主要考查了轴对称图形的知识,掌握轴
7、对称图形的概念是解决此类问题的关键3、D【分析】根据轴对称的性质解答【详解】解:ABC与ABC关于直线MN对称,BB交MN于点O,ACAC,BOBO,AAMN,但ABBC不正确,故选:D【点睛】此题考查了轴对称的性质:轴对称两个图形的对应边相等,对应角相等,熟记性质是解题的关键4、C【分析】根据称轴的定义进行分析即可【详解】解:A是轴对称图形,故本选项不符合题意;B是轴对称图形,故本选项不符合题意;C不是轴对称图形,故本选项符合题意;D是轴对称图形,故本选项不符合题意;故选:C【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合5、D【分析】轴对称图形的定义
8、:如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,据此逐项判断即可【详解】解:A中图形是轴对称图形,不符合题意;B中图形是轴对称图形,不符合题意;C中图形是轴对称图形,不符合题意;D中图形不是轴对称图形,符合题意,故选:D【点睛】本题考查轴对称的定义,理解定义,找准对称轴是解答的关键6、B【分析】把一个图形沿某一条直线对折,直线两旁的部分能够完全重合的图形叫做轴对称图形,根据定义判断即可【详解】解:A、不是轴对称图形B、是轴对称图形C、不是轴对称图形D、不是轴对称图形故选:B【点睛】本题主要是考查了轴对称图形的定义,熟练掌握轴对称图形的定义是解题的关
9、键7、C【详解】解:A、不是轴对称图形,故此选项不符合题意;B、不是轴对称图形,故此选项不符合题意;C、是轴对称图形,故此选项符合题意;D、不是轴对称图形,故此选项不符合题意;故选:C【点睛】本题考查了轴对称图形的定义,解题的关键是熟练掌握轴对称图形的定义:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形8、B【详解】解:图和是轴对称图形,故选:B【点睛】本题考查了轴对称图形,熟记轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键9、C【分析】根据轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互
10、相重合,这个图形就叫做轴对称图形,进行逐一判断即可【详解】解:A、不是轴对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不符合题意;故选C【点睛】本题主要考查了轴对称图形的识别,熟知轴对称图形的定义是解题的关键10、A【详解】A、不是轴对称图形,故符合题意;B、是轴对称图形,故不符合题意;C、是轴对称图形,故不符合题意;D、是轴对称图形,故不符合题意;故选A【点睛】本题主要考查轴对称图形的识别,熟练掌握“如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫轴对称图形”是解题的关键二、填空题1、18【分析】因为P,P1关于
11、OA对称,P,P2关于OB对称,推出PN=NP2,MP=MP1,推出PMN的周长=PN+MN+PM=NP2+MN+NP1=P1P2即可解决问题【详解】解:P,P1关于OA对称,P,P2关于OB对称,PN=NP2,MP=MP1,PMN的周长=PN+MN+PM=NP2+MN+MP1=P1P2=18,PMN的周长为18故答案为:18【点睛】本题考查了轴对称的性质,三角形的周长等知识,解题的关键是熟练掌握轴对称的性质,学会用转化的思想思考问题,属于中考常考题型2、全等的 对应点所连线段 【分析】根据轴对称的性质:成轴对称的两个图形全等,如果两个图形成轴对称,那么对称轴是对应点的垂直平分线,进行求解即可
12、【详解】解:(1)成轴对称的两个图形是全等的;(2)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线故答案为:全等的,对应点所连线段【点睛】本题主要考查了轴对称图形的性质,解题的关键在于能够熟练掌握相关知识进行求解3、65【分析】作CD平面镜,垂足为G,交地面于D根据垂线的性质可得CDH+=90,根据平行线的性质可得AGC=CDH,根据入射角等于反射角可得,从而可得夹角的度数【详解】解:如图,作CD平面镜,垂足为G,交地面于DCDH+=90,根据题意可知:AGDF,AGC=CDH,CDH=25,=65故答案为:65【点睛】本题考查了入射角等于反射角问题,解决本题的关
13、键是掌握平行线的性质、明确法线CG平分AGB4、【分析】根据题意先求出BAO=25,进而求出OBC=40,求出COE=OCB=40,最后根据等腰三角形的性质即可得出,进而再判断即可【详解】解:BAC=50,AO为BAC的平分线,BAO=BAC=50=25又AB=AC,ABC=ACB=65DO是AB的垂直平分线,OA=OB,ABO=BAO=25,OBC=ABC-ABO=65-25=40AO为BAC的平分线,AB=AC,直线AO垂直平分BC,OB=OC,OCB=OBC=40,将C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,OE=CECOE=OCB=40;在OCE中,OEC=180-C
14、OE-OCB=180-40-40=100,OEF=CEO=50,正确;OCB=OBC=COE=40,BOE=180-OBC-COE-OCB =180-40-40-40=60, 错误;ABO=BAO=25,DO是AB的垂直平分线,DOB=90-ABO=75,OCB=OBC=40,BOC=180-OBC -OCB=180-40-40=100,DOC=DOB+BOC=75+100=175,即D、O、C三点不共线,错误.故答案为:【点睛】本题考查等腰三角形的性质和三角形内角和180以及翻折变换及其应用,解题的关键是根据翻折变换的性质,找出图中隐含的等量关系,灵活运用有关定理来分析判断5、AP=BP (
15、答案不唯一)【分析】根据轴对称图形的性质,即可求解【详解】解:直线MN是四边形AMBN的对称轴,AP=BP故答案为:AP=BP (答案不唯一)【点睛】本题主要考查了轴对称图形的性质,熟练掌握轴对称图形的关键是找到对称轴,图形关于对称轴折叠前后对应线段相等,对应角相等是解题的关键三、解答题1、(1)见解析;(2)见解析;(3)【分析】(1)利用网格特点和轴对称的性质画出A、B、C关于直线l的对称点A1、B1、C1即可;(2)连接CB1交直线l于P,则利用两点之间线段最短可判断P点满足条件;(3)根据ABC的面积等于矩形面积减去ABC周围三个三角形的面积即可得出答案【详解】解:(1)如图,A1B1
16、C1为所作;(2)如图,点P为所作;(3)如图:【点睛】本题考查了作图轴对称变换,最短路径等知识点,能够根据题意作出图形是解题的关键2、见解析【分析】根据角平分线的定义可得DAE=DAF,再根据两直线平行,内错角相等可得ADE=DAF,ADF=DAE,从而得解【详解】解:DEAC,ADE=DAF,DFAB,ADF=DAE,又AD是ABC的角平分线,DAE=DAF,ADE=ADF DA平分EDF【点睛】本题综合考查了平行线和角平分线的性质,注意等量代换的应用3、画图见解析【分析】把一个图形沿某条直线对折,直线两旁的部分能够完全重合,则这个图形是轴对称图形,根据定义先确定对称轴,再移动其中一个小正
17、方形即可.【详解】解:如图,【点睛】本题考查的是轴对称图案的设计,确定轴对称图案的对称轴是解本题的关键.4、见解析【分析】根据网格结构分别确定出不同的对称轴,然后作出成轴对称的三角形即可得解;【详解】与成轴对称的格点三角形如图所示:即为所求【点睛】本题考查了利用轴对称变换作图,熟练掌握网格结构并准确找出对应点的位置是解题的关键,本题难点在于确定出不同的对称轴5、(1)见解析;(2)见解析【分析】(1)根据两点之间线段最短,连接AB,交已知直线于点C即可;(2)根据两点之间线段最短,作A关于已知直线的对称点E,连接BE交已知直线于C,由此即可得出答案【详解】解:(1)连接AB,交已知直线于点C,则该点C即为所求;(2)作点A关于已知直线的对称点E,连接BE交已知直线于点C,连接AC,BC,则此时C点符合要求【点睛】此题主要考查了平面内最短路线问题求法,熟练掌握轴对称图形的性质是解决本题的关键