《2022年强化训练京改版九年级数学下册第二十五章-概率的求法与应用定向测评试卷(精选含详解).docx》由会员分享,可在线阅读,更多相关《2022年强化训练京改版九年级数学下册第二十五章-概率的求法与应用定向测评试卷(精选含详解).docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、九年级数学下册第二十五章 概率的求法与应用定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、书架上有本小说、本散文,从中随机抽取本恰好是小说的概率是( )ABCD2、在一个不透明的布袋中装有45个白
2、球和若干个黑球,除颜色外其他都相同,小强每次摸出一个球记录下颜色后并放回,通过多次试验后发现,摸到黑球的频率稳定在0.4左右,则布袋中黑球的个数可能有( )A18B27C36D303、在抛掷一枚质地均匀的硬币的实验中,第100次抛掷时,反面朝上的概率是( )ABCD不确定4、从一副完整的扑克牌中任意抽取1张,下列事件与抽到“A”的概率相同的是()A抽到“大王”B抽到“红桃”C抽到“小王”D抽到“K”5、如图所示,平整的地面上有一个不规则图案(图中阴影部分),为了了解该图案的面积是多少,我们采取了以下办法:用一个长为a,宽为b的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,
3、并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计实验结果),现将若干次有效实验的结果绘制成了如图所示的折线统计图,由此估计不规则图案的面积大约是( )Aa2BabCb2Dab6、一个口袋中有红色、黄色、蓝色玻璃球共200个,小明通过大量摸球试验后,发现摸到红球的频率为35%,则估计红球的个数约为()A35个B60个C70个D130个7、抛掷一枚质地均匀的散子(骰子六个面上分别标有1,2,3,4,5,6六个点数),则骰子面朝上的点数大于4的概率是()ABCD8、一只不透明袋子中装有1个绿球和若干个黑球,这些球除颜色外都相同,某课外学习小组做摸球试验,将口袋中的球拌匀,从中随机摸出
4、个球,记下颜色后再放回口袋中不断重复这一过程,获得数据如下:摸球的次数200300400100016002000摸到黑球的频数14218626066810641333摸到黑球的频率0.71000.62000.65000.66800.66500.6665该学习小组发现,摸到黑球的频率在一个常数附近摆动,由此估计这个口袋中黑球有()个A4B3C2D19、如图,一只小狗在如图所示的方砖上走来走去,最终停留在阴影方砖上的概率是( )ABCD10、有四张形状相同的卡片,正面分别印着矩形、菱形、等边三角形、圆四个图案,卡片背面全一样,随机抽出一张,刚好抽到正面的图案是中心对称图形的概率是()ABCD1第卷
5、(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在一个不透明的盒子中装有2个白球,若干个黄球,它们除颜色不同外,其余均相同若从中随机摸出一个球,它是白球的概率为,则黄球的个数为_2、从这四个数中选一个数,选出的这个数是无理数的概率为_3、 “熊猫蛋糕店”推出“熊猫不走”的游戏,凡是订购蛋糕者,可玩一次丢骰子游戏:丢一枚质地均匀、六个面分别刻有1到6点数的正方体骰子两次,若两次正面朝上点数之和大于7,可领取蛋糕店准备的熊猫玩偶,那么订购者获得熊猫玩偶的概率为_4、在一个不透明的布袋中,黄色、红色的乒乓球共10个,这些球除颜色外其他都相同小刚通过多次摸球实验后发现其中摸到黄球的
6、频率稳定在60%,则布袋中红色球的个数很可能是_个5、如图,在一块边长为30cm的正方形飞镖游戏板上,有一个半径为10cm的圆形阴影区域,飞镖投向正方形任何位置的机会均等,则飞镖落在阴影区域内的概率为_(结果保留)三、解答题(5小题,每小题10分,共计50分)1、某校在宣传“民族团结”活动中,采用四种宣传形式:A器乐,B舞蹈,C朗诵,D唱歌每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图:请结合图中所给信息,解答下列问题(1)本次调查的学生共有 人;(2)扇形统计图中表示D选项的扇形圆心角的度数是 ,并把条形统计图补充完整;
7、(3)七年级一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率2、一个不透明的口袋中装有2个红球和1个白球,小球除颜色外其余均相同(1)从口袋中随机摸出一个小球,小球的颜色是白色的概率是 ;(2)从口袋中随机摸出一个小球,记下颜色后放回,再随机摸出一个小球请用画树状图(或列表)的方法,求两次摸出的小球颜色相同的概率3、小王和小刘两人在玩转盘游戏时,游戏规则:同时转动A,B两个转盘,当两转盘停止后,若指针所指两个区域的数字之和为2的倍数,则小王获胜;若指针所指两个区域的数字之积为2
8、的倍数,则小刘获胜,如果指针落在分割线上,则视为无效,需重新转动转盘(1)请用列表或画树状图的方法表示所有可能的结果(2)这个游戏规则对双方公平吗?请说明理由4、某生物制剂公司以箱养的方式培育一批新品种菌苗,每箱有40株菌苗若某箱菌苗失活率大于10%,则需对该箱菌苗喷洒营养剂某日工作人员随机抽检20箱菌苗,结果如表:箱数625424每箱中失活菌苗株数012356(1)抽检的20箱平均每箱有多少株失活菌苗?(2)该日在这批新品种菌苗中随机抽取一箱,记事件A为:该箱需要喷洒营养剂请估计事件A的概率5、如图是甲、乙两个可以自由转动且质地均匀的转盘,甲转盘被分成三个大小相同的扇形,分别标有1,2,3;
9、乙转盘被分成四个大小相同的扇形,分别标有1,2,3,4,指针的位置固定,转动转盘直至它自动停止(若指针正好指向扇形的边界,则重新旋转转盘,直至指针指向扇形内部)(1)转动甲转盘,指针指向3的概率是 ;(2)利用列表或画树状图的方法求转动两个转盘指针指向的两个数字和是5的概率-参考答案-一、单选题1、D【分析】概率=所求情况数与总情况数之比,再分析可得:总的情况数有5种,而随机抽取刚好是小说的情况数有3种,利用概率公式可得答案.【详解】解:书架上有本小说、本散文,共有本书,从中随机抽取本恰好是小说的概率是;故选:D【点睛】本题考查的是简单随机事件的概率,掌握“概率公式求解简单随机事件的概率”是解
10、本题的关键.2、D【分析】设黑球的个数为x个,根据频率可列出方程,解方程即可求得x,从而得到答案【详解】设黑球的个数为x个,由题意得:解得:x=30经检验x=30是原方程的解则袋中黑球的个数为30个故选:D【点睛】本题考查了用频率估计概率,解方程,根据概率列出方程是关键3、B【分析】抛一枚质地均匀的硬币,有两种结果,正面或反面朝上,每种结果等可能出现,利用概率公式,即可求得答案【详解】解:抛掷一枚质地均匀的硬币,有两种结果:正面朝上,反面朝上,每种结果等可能出现,第100次再抛这枚硬币时,反面向上的概率是:故选:B【点睛】本题主要考查简单事件概率,掌握等可能事件的概率公式,是解题的关键.4、D
11、【分析】抽到“A”的概率为,只要计算四个选项中的概率,即可得到答案【详解】抽到“A”的概率为,而抽到“大王”与抽到“小王”的概率均为,抽到“红桃”的概率为,抽到“K”的概率为,即抽到“K”的概率与抽到“A”的概率相等故选:D【点睛】本题考查了简单事件的概率,根据概率计算公式,要知道所有可能结果数,及事件发生的结果数,即可求得事件的概率5、B【分析】本题分两部分求解,首先假设不规则图案面积为x,根据几何概率知识求解不规则图案占长方形的面积大小;继而根据折线图用频率估计概率,综合以上列方程求解【详解】解:假设不规则图案面积为x m2,用一个长为a,宽为b的长方形长方形面积为abm2,根据几何概率公
12、式小球落在不规则图案的概率为:,当事件A试验次数足够多,即样本足够大时,其频率可作为事件A发生的概率估计值,故由折线图可知,小球落在不规则图案的概率大约为0.35,综上有:0.35,解得xab故选:B【点睛】本题考查几何概率以及用频率估计概率,并在此基础上进行了题目创新,解题关键在于清晰理解题意,能从复杂的题目背景当中找到考点化繁为简,创新题目对基础知识要求极高6、C【分析】根据大量重复试验后频率的稳定值即为概率,进行求解即可【详解】解:一个口袋中有红色、黄色、蓝色玻璃球共200个,小明通过大量摸球试验后,发现摸到红球的频率为35%,红球的个数=20035%=70个,故选C【点睛】本题主要考查
13、了用频率估计概率,解题的关键在于能够熟练掌握大量重复试验下,频率的稳定值即为概率7、B【分析】由题意根据掷得面朝上的点数大于4情况有2种,进而求出概率即可【详解】解:掷一枚均匀的骰子时,有6种情况,出现点数大于4的情况有2种,掷得面朝上的点数大于4的概率是.故选:B【点睛】本题考查概率的求法,注意掌握如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=8、C【分析】该学习小组发现,摸到黑球的频率在一个常数附近摆动,这个常数约为0.667,据此知摸出黑球的概率为0.667,继而得摸出绿球的概率为0.333,求出袋子中球的总个数即可得出答案【详解】解
14、:该学习小组发现,摸到黑球的频率在一个常数附近摆动,这个常数约为0.667,估计摸出黑球的概率为0.667,则摸出绿球的概率为,袋子中球的总个数为,由此估出黑球个数为,故选:C【点睛】本题考查了利用频率估计概率,解题的关键是掌握大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率9、B【分析】由题意,只要求出阴影部分与矩形的面积比即可【详解】解:由题意,假设每个小方砖的面积为1,则所有方砖的面积为15,而阴影部分的面积为5,由几何概型公式得到最终停在阴影方砖上的概率为:;故选:B
15、【点睛】本题将概率的求解设置于黑白方砖中,考查学生对简单几何概率的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性用到的知识点为:概率=相应的面积与总面积之比10、C【分析】先判断出矩形、菱形、等边三角形、圆的中心对称图形,在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心,再根据概率公式解答即可【详解】解:在矩形、菱形、等边三角形、圆中,中心对称图形有矩形、菱形和圆,共3个;则P(中心对称图形);故选:C【点睛】本题考查中心对称图形的识别,列举法求
16、概率,掌握中心对称图形的识别,列举法求概率是解题关键二、填空题1、1【分析】设黄球的个数为x个,然后根据概率公式列方程,解此分式方程即可求得答案【详解】解:设黄球的个数为x个,根据题意得:,解得:x=1,经检验,x=1是原分式方程的解,黄球的个数为1个故答案为:1【点睛】此题考查了分式方程的应用,以及概率公式的应用用到的知识点为:概率=所求情况数与总情况数之比2、【分析】确定无理数的个数,利用概率公式计算【详解】解:这四个数中无理数有,选出的这个数是无理数的概率为,故答案为:【点睛】此题考查了无理数的定义,概率的计算公式,正确判断无理数的解题的关键3、【分析】根据题意列出表格或画出树状图,表示
17、出所有可能的情况,再找到符合题意的情况,最后利用概率公式计算即可【详解】根据题意可列表格如下:12345611+1=21+2=31+3=41+4=51+5=61+6=722+1=32+2=42+3=52+4=62+5=72+6=833+1=43+2=53+3=63+4=73+5=83+6=944+1=54+2=64+3=74+4=84+5=94+6=1055+1=65+2=75+3=85+4=95+5=105+6=1166+1=76+2=86+3=96+4=106+5=116+6=12根据表格可知共有36种可能的情况,其中两次正面朝上点数之和大于7的情况有15种,所以订购者获得熊猫玩偶的概率为
18、故答案为【点睛】本题考查利用列表法或画树状图法求概率根据题意正确的列出表格或画出树状图是解答本题的关键4、4【分析】设出黄球的个数,根据黄球的频率求出黄球的个数即可解答【详解】设黄球的个数为x,共有黄色、红色的乒乓球10个,黄球的频率稳定在60%,解得:,布袋中红色球的个数很可能是(个)故答案为:4【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率,关键是根据黄球的频率得到相应的等量关系,列出方程5、#【分析】根据概率的公式,利用圆的面积除以正方形的面积,即可求解【详解】解:根据题意得:飞镖落在阴影区域内的概率为 故答案为:【点睛】本题考查了概率公式:熟练掌握随机事件A的概率P
19、(A)=事件A可能出现的结果数除以所有可能出现的结果数;P(必然事件)=1;P(不可能事件)=0是解题的关键三、解答题1、(1)100;(2)144,见解析;(3)见解析,【分析】(1)根据器乐的占比和人数进行求解即可;(2)用360(D选项的人数)总人数即可得D选项的扇形圆心角度数,然后求出B选项的人数,补全统计图即可;(3)先画树状图得到所有的等可能性的结果数,然后找到恰好是甲、乙的结果数,利用概率公式求解即可【详解】解:(1)由题意得:本次调查的学生共有:3030%=100(人);故答案为:100;(2)表示D选项的扇形圆心角的度数是,喜欢B类项目的人数有:100-30-10-40=20
20、(人),补全条形统计图如图1所示:故答案为:144;(3)画树形图如图2所示:共有12种情况,被选取的两人恰好是甲和乙有2种情况,则被选取的两人恰好是甲和乙的概率是【点睛】本题主要考查了条形统计图与扇形统计图信息相关联,树状图或列表法求解概率,解题的关键在于能够正确读懂统计图2、(1);(2)【分析】(1)根据概率公式计算即可;(2)画出树状图即可得解;【详解】(1)根据题意可得,小球的颜色是白色的概率是;故答案是:;(2)根据题意画出树状图如下:则两次摸出的小球颜色相同的概率为【点睛】本题主要考查了概率公式的应用和画树状图求概率,准确画图计算是解题的关键3、(1)见解析;(2)不公平,理由见
21、解析【分析】(1)根据列表法求得所有可能结果;(2)根据列表分别求得小王和小刘获胜的概率进而可得结论【详解】(1)列表如下1231和为2,积为1和为3,积为2和为4,积为32和为3,积为2和为4,积为4和为5,积为6(2)不公平,理由如下,根据列表可知,共有6种等可能情形,其中和为2的倍数有3种情形,小王获胜的概率为;积为2的倍数有4种情形,小刘获胜的概率为两者概率不一致,故不公平【点睛】本题考查了概率的应用,列表法求概率是解题的关键4、(1)抽检的20箱平均每箱有2.9株失活菌苗;(2)事件A的概率为【分析】(1)根据题意及表格可直接进行求解;(2)由题意知当每箱中失活菌苗株数为4010=4
22、株的时候需喷洒营养剂,然后根据表格及概率公式可直接进行求解【详解】解:(1)由表格得:(株);答:抽检的20箱平均每箱有2.9株失活菌苗;(2)由题意得:4010=4株,当每箱中失活菌苗株数为4株时,则需喷洒营养剂,即事件A的概率为【点睛】本题主要考查概率,熟练掌握概率的求解是解题的关键5、(1);(2)【分析】(1)利用概率公式求解指针指向3的概率即可;(2)先列表得到所有的等可能的结果数与和为5的结果数,再利用概率公式求解即可【详解】解:(1)甲转盘被分成三个大小相同的扇形,分别标有1,2,3;所以转动甲转盘,指针指向3的概率是: 故答案为:;(2)列表如下:12341和2和3和4和52和3和4和5和63和4和5和6和7所有的等可能的结果数有12种,和为5的结果数有3种,所以转动两个转盘指针指向的两个数字和是5的概率【点睛】本题考查的是利用列表法或画树状图的方法求解简单随机事件的概率,掌握“列表法得到所有的等可能的结果数与符合条件的结果数”是解本题的关键.