2021-2022学年度北师大版八年级数学下册第一章三角形的证明综合测评试卷(含答案解析).docx

上传人:可****阿 文档编号:30731633 上传时间:2022-08-06 格式:DOCX 页数:32 大小:828.38KB
返回 下载 相关 举报
2021-2022学年度北师大版八年级数学下册第一章三角形的证明综合测评试卷(含答案解析).docx_第1页
第1页 / 共32页
2021-2022学年度北师大版八年级数学下册第一章三角形的证明综合测评试卷(含答案解析).docx_第2页
第2页 / 共32页
点击查看更多>>
资源描述

《2021-2022学年度北师大版八年级数学下册第一章三角形的证明综合测评试卷(含答案解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度北师大版八年级数学下册第一章三角形的证明综合测评试卷(含答案解析).docx(32页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、北师大版八年级数学下册第一章三角形的证明综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、等腰三角形一边长是2,一边长是5,则此三角形的周长是( )A9B12C15D9或122、下列三个说法:有一个

2、内角是30,腰长是6的两个等腰三角形全等;有一个内角是120,底边长是3的两个等腰三角形全等;有两条边长分别为5,12的两个直角三角形全等其中正确的个数有( )A3B2C1D03、如图,ABC是等边三角形,点在边上,则的度数为( )A25B60C90D1004、如图,等题直角OAB中,过点A作,若线段上一点C满足,则的度数为( )ABCD5、如图,在RtABC中,ACB=90,BAC=30,ACB的平分线与ABC的外角的平分线交于E点,连接AE,则AEC的度数是( )A45B40C35D306、下列四个命题是真命题的有()同位角相等;相等的角是对顶角;直角三角形两个锐角互余;三个内角相等的三角

3、形是等边三角形A1个B2个C3个D4个7、如图,在ABC中,于点D,AB的垂直平分线交AB于点E,交BC于点F,连接AF,则的度数为( )A20B30C35D708、如图,在ABC中,BAC=90,ABC=2C,平分ABC,交AC于点E,于点D,有下列结论:;点E在线段BC的垂直平分线上;其中,正确的结论有( )A1个B2个C3个D4个9、已知等腰三角形两边的长分别为3和7,则此等腰三角形的周长为( )A10B15C17D1910、如图,在RtABC中,C90,A的平分线交BC于点D,过点C作CGAB于点G,交AD于点E,过点D作DFAB于点F下列结论:BACG;CEDF;CEDCDE;SAE

4、C:SAEGAC:AG上述结论中正确的个数是()A4个B3个C2个D1个第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在ABC中,点D为BC边的中点,点E为AC上一点,将C沿DE翻折,使点C落在AB上的点F处,若AEF=50,则A的度数为_2、如图,点P在四边形ABCD中,PA平分,设,则与满足的数量关系是_3、等腰ABC,底角为70,点在边上,将ABC分成两个三角形,当这两个三角形有一个是以为腰的等腰三角形时,则的度数是_4、如图,在平面直角坐标系中,点,在第一象限内找一点横坐标、纵坐标均为整数的点C,使得点M是的三边垂直平分线的交点,则点C的坐标为_5、若,

5、则以、为边长的等腰三角形的周长为_三、解答题(5小题,每小题10分,共计50分)1、如图,点D为锐角ABC的平分线上一点,点M在边BA上,点N在边BC上,BMD+BND180试说明:DMDN2、在平面直角坐标系xOy中,点M(2,t-2)与点N关于过点(0,t)且垂直于y轴的直线对称(1)当t =-3时,点N的坐标为 ;(2)以MN为底边作等腰三角形MNP当t =1且直线MP经过原点O时,点P坐标为 ;若MNP上所有点到x轴的距离都不小于a(a是正实数),则t的取值范围是 (用含a的代数式表示)3、如图,在ABC中,AC=BC,ACB=90,点D是边AB上的动点,连接CD,点B关于直线CD的对

6、称点为点E,射线AE与射线CD交于点F(1)在图中,依题意补全图形;(2)记DCB=(45),求BAF的大小;(用含的式子表示)(3)若BCE是等边三角形,猜想EF和AB的数量关系,并证明你的结论4、下面是小丽同学设计的“作30角”的尺规作图过程已知:如图1,射线OA 求作:AOB,使AOB 30 作法:如图2, 在射线OA上任取一点C;分别以O,C为圆心,OC长为半径作弧,两弧在射线OA的上方交于点D,作射线OD,并连接CD;以O为圆心,任意长为半径作弧,分别交射线OA,OD于点E,F;分别以E,F为圆心,以大于的同样长为半径作弧,两弧在AOD内部交于点B;作射线OB; AOB就是所求的角根

7、据小丽设计的尺规作图过程,解答下列问题:(1)使用直尺和圆规,依作法补全图2(保留作图痕迹);(2)补全下面证明过程:证明:连接BE,BF OCODCD, OCD是等边三角形COD 又 OE OF,BE BF,OBOB, OEBOFB( )(填推理依据) EOBFOB( )(填推理依据) AOB 30AOB就是所求的角5、已知,在ABC中,BAC30,点D在射线BC上,连接AD,CAD,点D关于直线AC的对称点为E,点E关于直线AB的对称点为F,直线EF分别交直线AC,AB于点M,N,连接AF,AE,CE(1)如图1,点D在线段BC上根据题意补全图1;AEF (用含有的代数式表示),AMF ;

8、用等式表示线段MA,ME,MF之间的数量关系,并证明(2)点D在线段BC的延长线上,且CAD60,直接用等式表示线段MA,ME,MF之间的数量关系,不证明-参考答案-一、单选题1、B【分析】分两种情况考虑:当5为等腰三角形的腰长时和底边时,分别求出周长即可【详解】解:当5为等腰三角形的腰长时,2为底边,此时等腰三角形三边长分别为5,5,2,周长为55212;当5为等腰三角形的底边时,腰长为2,此时等腰三角形三边长分别为5,2,2,52+2,不能组成三角形,综上这个等腰三角形的周长为12故选B【点睛】此题考查了等腰三角形的性质,以及三角形的三边关系,熟练掌握等腰三角形的性质是解本题的关键2、C【

9、分析】根据三角形全等的判定方法,等腰三角形的性质和直角三角形的性质判断即可【详解】解:当一个是底角是30,一个是顶角是30时,两三角形就不全等,故本选项错误;有一个内角是120,底边长是3的两个等腰三角形全等,本选项正确;当一条直角边为12,一条斜边为12时,两个直角三角形不全等,故本选项错误;正确的只有1个,故选:C【点睛】本题考查了全等三角形的判定定理,等腰三角形的性质和直角三角形的性质,熟练掌握全等三角形的判定定理是解题的关键3、D【分析】由等边三角形的性质及三角形外角定理即可求得结果【详解】是等边三角形C=60ADB=DBC+C=40+60=100故选:D【点睛】本题考查了等边三角形的

10、性质、三角形外角的性质,掌握这两个性质是关键4、C【分析】过点作,交的延长线于,于,由“”可证,可得,由“”可证,可得,即可求解【详解】解:如图,过点作,交的延长线于,于,又,又,在和中,在和中,故选:C【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,角平分线的性质等知识,添加恰当辅助线构造全等三角形是本题的关键5、D【分析】作EFAC交CA的延长线于F,EGAB于G,EHBC交CB的延长线于H,根据角平分线的性质和判定得到AE平分FAG,求出EAB的度数,根据角平分线的定义求出ABE的度数,根据三角形内角和定理计算得到的度数,再计算出的度数即可【详解】解:作EFAC交CA的延

11、长线于F,EGAB于G,EHBC交CB的延长线于H,CE平分ACB,BE平分ABD,EF=EH,EG=EH,EF=EG又EFAC,EGAB,AE平分FAG,BAC=30,BAF=150,EAB=75,ACB=90,BAC=30,ABC=60,ABH=120,又BE平分ABD,ABE=60,AEB=180-EAB-ABE=45,ACB=90,BAC=30,ABD=120,CE是ACB的平分线,BE是ABC的外角平分线,EBD=60,BCE=45,CEB=60-45=15 故选:D【点睛】题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键,注意三角形内角和定理和角平分线

12、的定义的正确运用6、B【分析】利用平行线的性质、对顶角的定义、直角三角形的性质及等边三角形的性质分别判断后即可确定正确的选项【详解】两直线平行,同位角相等,故错误,是假命题;相等的角是对顶角,错误,是假命题;直角三角形两个锐角互余,正确,是真命题;三个内角相等的三角形是等边三角形,正确,是真命题,综上所述真命题有2个,故选:B【点睛】本题考查了命题真假的判断,要说明一个命题是正确的,需要根据命题的题设和已学的有关公理、定理进行说明、推理、证明,正确的命题叫做真命题,错误的命题叫做假命题7、A【分析】利用等边对等角依次可求得B和BAF的大小,根据等腰三角形三线合一可得BAD的度数,从而可得FAD

13、的度数【详解】解:,AB的垂直平分线交AB于点E,AF=BF,BAF=B=35,,,故选:A【点睛】本题考查等腰三角形的性质,垂直平分线的性质理解等边对等角和等腰三角形三线合一,并能依此求得相应角的度数是解题关键8、D【分析】首先求出C=30,ABC=60,再根据角平分线的定义,直角三角形30角的性质,线段的垂直平分线的定义一一判断即可【详解】解:在ABC中,BAC=90,ABC=2C,C=30,ABC=60,BE平分ABC,ABE=EBC=30,EBC=C,EB=EC,ACBE=ACEC=AE,故正确,EB=EC,点E在线段BC的垂直平分线上,故正确,ADBE,BAD=60,BAE=90,E

14、AD=30,EAD=C,故正确,ABD=30,ADB=90,AB=2AD,BAC=90,C=30,BC=2AB=4AD,故正确,故选:D【点睛】本题考查角平分线的性质,线段的垂直平分线的定义,直角三角形30度角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型9、C【分析】等腰三角形两边的长为3和7,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论【详解】解:当腰是3,底边是7时,3+37,不满足三角形的三边关系,因此舍去当底边是3,腰长是7时,3+77,能构成三角形,则其周长3+7+717故选:C【点睛】本题考查了等腰三角形的性质和三角形的三边关系,解题时注意:若没有明确

15、腰和底边,则一定要分类进行讨论,还应验证各种情况是否能构成三角形,这是解题的关键10、A【分析】由CGAB于点G得到CAB+ACG90,然后由C90得到CAB+B90,从而得到BACG,正确;由AD平分BAC得到CADBAD,从而得到CDE90CAD,由CGAB得到AEG90BAD,从而得到AEGCDE,然后结合对顶角相等得到CEDCDE,正确;然后得到CECD,再由AD平分BAC,C90,DFAB得到CDDF,即可得到CEDF,正确;过点E作EHAC于点H,则EHEG,然后得到SAEC,SAEG,从而得到SAEC:SAEGAC:AG,正确【详解】解:CGAB,CGA90,CAB+ACG90,

16、C90,CAB+B90,BACG,故正确;AD平分BAC,CADBAD,C90,CGA90,CDE90CAD,AEG90BAD,AEGCDE,CEDCDE,故正确;CECD,AD平分BAC,C90,DFAB,CDDF,CEDF,故正确;如图,过点E作EHAC于点H,则EHEG,SAEC,SAEG,SAEC:SAEGAC:AG,故正确;正确的个数是4个,故选:A【点睛】本题考查了三角形的内角和定理、角平分线的性质定理、等腰三角形的性质,解题的关键是熟知直角三角形的两个锐角互余二、填空题1、65度【分析】由点D为BC边的中点,得到BD=CD,根据折叠的性质得到DF=CD,EFD=C,得到DF=BD

17、,根据等腰三角形的性质得到BFD=B,由三角形的内角和和平角的定义得到A=AFE,于是得到结论【详解】解:点D为BC边的中点,BD=CD,将C沿DE翻折,使点C落在AB上的点F处,DF=CD,EFD=C,DF=BD,BFD=B,A=180-C-B,AFE=180-EFD-DFB,A=AFE,AEF=50,A=(180-50)=65故答案为:65【点睛】本题考查的是图形翻折变换的图形能够重合的性质,以及等边对等角的性质,熟知折叠的性质是解答此题的关键2、【分析】连接AC,延长BP交AC于点E,证明BP垂直平分AC,得到,连接BD,延长AP交BD于F,证明ABD关于AP对称,得出ABE=,由此得到

18、答案【详解】解:如图,连接AC,延长BP交AC于点E,AB=BC,点B在线段AC的垂直平分线上,AP=PC,点P在线段AC的垂直平分线上, BP垂直平分AC,连接BD,延长AP交BD于F,AB=AD,PA平分,ABD关于AP对称,BP=DP,ABE=,即,故答案为:【点睛】此题考查线段垂直平分线的判定及性质,等腰三角形三线合一的性质,正确掌握垂直平分线的判定定理及等腰三角形三线合一的性质是解题的关键3、100或110【分析】画出图形,分两种情况考虑:AD=BD时,则ABD=A,由三角形内角和可求得ADB的度数;BD=BC时,则BDC=C=70,从而可求得ADB的度数【详解】AB=AC,底角为7

19、0ABC=C=70,A=180(ABC+C)=40 当AD=BD时,如图1,则ABD=A=40ADB=180(A+ABD)=18080=100当BD=BC时,如图2,则BDC=C=70ADB=180BDC=18070=110综上所述,ADB的度数为100或110【点睛】本题考查了等腰三角形的性质、三角形内角和定理等知识,涉及分类讨论,关键是等腰三角形的性质,另外要注意分类讨论4、(4,5)或(6,1)或(6,3)【分析】连接MA,MB,根据线段垂直平分线的性质结合勾股定理可求出设C点坐标为,则,即,最后根据C点在第一象限内,且横、纵坐标都为整数,即可确定a,b的值,即得出答案【详解】如图,连接

20、MA,MB,根据图可知点M是ABC的三边垂直平分线的交点,设C点坐标为根据题意可知,且都为整数,即,且,或或或,解得:或(舍)或或C点坐标为(4,5)或(6,1)或(6,3)故答案为:(4,5)或(6,1)或(6,3)【点睛】本题考查线段垂直平分线的性质,勾股定理,两点的距离公式理解题意,结合线段垂直平分线的性质,分析出是解答本题的关键5、17【分析】先根据非负数的性质列式求出a、b的值,再分情况讨论求解即可【详解】解:,解得:,若是腰长,则底边为7,三角形的三边分别为3、3、7,3、3、7不能组成三角形;若是腰长,则底边为3,三角形的三边分别为7、7、3,能组成三角形,周长为:,以、为边长的

21、等腰三角形的周长为17,故答案为:17【点睛】本题考查了等腰三角形的性质,绝对值和平方的非负性,以及三角形的三边关系,难点在于要分类讨论求解三、解答题1、见解析【分析】过点D作DEAB于点E,DFBC于点F构造全等三角形EMDFND,根据全等三角形的对应边相等推知DMDN【详解】解:过点D作DEAB于点E,DFBC于点FDEBDFB90又BD平分ABC,DEDFBMD+DME180,BMD+BND180,DMEBND在EMD和FND中,EMDFND(AAS)DMDN【点睛】本题考查了角的平分线,三角形全等的判定和性质,熟练掌握三角形全等的判定是解题的关键2、(1)(2,-1);(2)(-2,1

22、);ta+2或t-a-2【分析】(1)先求出对称轴,再表示N点坐标即可;(2)以MN为底边作等腰三角形MNP,则点P在直线y=t=1上,直线OM与y=1的交点即为所求;表示出M、N、P的坐标,比较纵坐标的绝对值即可【详解】(1)过点(0,t)且垂直于y轴的直线解析式为y=t点M(2,t-2)与点N关于过点(0,t)且垂直于y轴的直线对称可以设N点坐标为(2,n),且MN中点在y=t上,记得点N坐标为当t =-3时,点N的坐标为(2)以MN为底边作等腰三角形MNP,且点M(2,t-2)与点N直线y=t对称点P在直线y=t上,且P是直线OM与y=1的交点当t =1时M(2,-1),N(2,3)OM

23、直线解析式为当y=1时,P点坐标为(-2,1)由题意得,点M坐标为(2,t-2),点N坐标为,点P坐标为,MNP上所有点到x轴的距离都不小于a只需要或者当M、N、P都在x轴上方时,此时,解得ta+2当MNP上与x轴有交点时,此时MNP上所有点到x轴的距离可以为0,不符合要求;当M、N、P都在x轴下方时,此时,解得t-a-2综上ta+2或t-a-2【点睛】本题考查坐标与轴对称、等腰三角形的性质等知识,解题的关键是利用轴对称表示坐标,属于中考常考题型3、(1)见解析;(2);(3),证明见解析【分析】(1)根据轴对称即可得出结论;(2)先判断出,再表示出BAF,即可得出结论;(3)先判断出是直角三

24、角形,结合是等边三角形,即可得出结论【详解】解:(1)如图所示;(2)连接由题意可知,即(3),证明:是等边三角形,由(2)可知点B关于直线CF的对称点为点E,是直角三角形,且【点睛】此题是几何变换综合题,主要考查了轴对称的性质,直角三角形的判定和性质,等边三角形的判定和性质,判断出BCF是直角三角形是解本题的关键4、(1)见解析;(2)60,SSS,全等三角形对应角相等【分析】(1)根据题意,以O为圆心,任意长为半径作弧,分别交射线OA,OD于点E,F;分别以E,F为圆心,以大于的同样长为半径作弧,两弧在AOD内部交于点B;作射线OB;则 AOB就是所求的角(2)根据等边三角形的性质,三角形

25、全等的性质与判定推理即可【详解】(1)补全作图如下,(2)证明:连接BE,BF OCODCD, OCD是等边三角形COD60 又 OE OF,BE BF,OBOB, OEBOFB(SSS)(填推理依据) EOBFOB(全等三角形对应角相等)(填推理依据) AOB 30AOB就是所求的角故答案为:60,SSS,全等三角形对应角相等【点睛】本题考查了基本作图-作角平分线,三角形全等的性质与判定,掌握基本作图是解题的关键5、(1)见解析; ,;MFMAME,证明见解析;(2)【分析】(1)按照要求旋转作图即可;由旋转和等腰三角形性质解出AEF;再由三角形外角定理求出AMF; 在FE上截取GFME,连

26、接AG,证明AFG AEM且AGM为等边三角形后即可证得MFMAME;(2)根据题意画出图形,根据含30的直角三角形的性质,即可得到结论【详解】解:(1)补全图形如下图: CAE=DAC=,BAE=30+FAE=2(30+)AEF=60-;AMF=CAE+AEF=+60-=60,故答案是:60-,60; MFMAME 证明:在FE上截取GFME,连接AG 点D关于直线AC的对称点为E,ADC AECCAE CAD BAC30, EAN30又点E关于直线AB的对称点为F,AB垂直平分EFAFAE,FANEAN 30,FAEFAMG AFAE,FAEF, GFME,AFG AEMAG AM又AMG,AGM为等边三角形MAMGMFMGGFMAME (2),理由如下:如图1所示,点E与点F关于直线AB对称,ANM=90,NE=NF,又NAM=30,AM=2MN,AM=2NE+2EM =MF+ME,MF=AM-ME;如图2所示,点E与点F关于直线AB对称,ANM=90,NE=NF,NAM=30,AM=2NM,AM=2MF+2NF=2MF+NE+NF=ME+MF,MF=MA-ME;综上所述:MF=MA-ME【点睛】本题考查轴对称、三角形全等判定与性质、等边三角形判定与性质,掌握这些是本题关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁