2022年浙教版初中数学七年级下册第四章因式分解专题攻克试题(含详细解析).docx

上传人:可****阿 文档编号:30730160 上传时间:2022-08-06 格式:DOCX 页数:21 大小:240.77KB
返回 下载 相关 举报
2022年浙教版初中数学七年级下册第四章因式分解专题攻克试题(含详细解析).docx_第1页
第1页 / 共21页
2022年浙教版初中数学七年级下册第四章因式分解专题攻克试题(含详细解析).docx_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《2022年浙教版初中数学七年级下册第四章因式分解专题攻克试题(含详细解析).docx》由会员分享,可在线阅读,更多相关《2022年浙教版初中数学七年级下册第四章因式分解专题攻克试题(含详细解析).docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、初中数学七年级下册第四章因式分解专题攻克(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、下列各式从左到右的变形,因式分解正确的是()A.x2+4(x+2)2B.x210x+16(x4)2C.x3xx(x21)D.2xy+6y22y(x+3y)2、的值为( )A.B.C.D.3533、下列各式由左边到右边的变形,是因式分解的是()A.x2+xy4x(x+y)4B.C.(x+2)(x2)x24D.x22x+1(x1)24、若多项式x2mx+n可因式分解为(x+3)(x4).其中m,n均为整数,则

2、mn的值是( )A.13B.11C.9D.75、下列分解因式中,x2+2xy+x=x(x+2y);x2+4x+4=(x+2)2;x2+y2=(x+y)(xy).正确的个数为()A.3B.2C.1D.06、下列分解因式正确的是()A.B.C.D.7、下列各式从左到右的变形中,为因式分解的是()A.x(ab)axbxB.x21+y2(x1)(x+1)+y2C.ax+bx+cx(a+b)+cD.y21(y+1)(y1)8、下列等式从左到右的变形,属于因式分解的是( )A.a2b2(ab)(ab)B.a(xy)axayC.x22x1x(x2)1D.(x1)(x3)x24x39、下列等式中,从左到右的变

3、形是因式分解的是()A.2x(x1)2x22xB.4m2n2(4m+n)(4mn)C.x2+2xx(x2)D.x22x+3x(x2)+310、下列多项式中,能用平方差公式进行因式分解的是( )A.B.C.D.11、下列各式从左边到右边的变形,是因式分解且分解正确的是 ( )A.(a+1)(a-1)=a2-1B.ab+ac+1=a(b+c)+1C. a2-2a-3=(a-1)(a-3)D.a2-8a+16=(a-4)212、下列各式中,正确的因式分解是( )A.B.C.D.13、下列各式由左到右的变形中,属于因式分解的是( ).A.B.C.D.14、若多项式能因式分解为,则k的值是( )A.12

4、B.12C.D.615、小南是一位密码编译爱好者,在他的密码手册中有这样一条信息:x1,ab,3,x2+1,a,x+1分别对应下列六个字:化,爱,我,数,学,新,现将3a(x21)3b(x21)因式分解,结果呈现的密码信息可能是()A.我爱学B.爱新化C.我爱新化D.新化数学二、填空题(10小题,每小题4分,共计40分)1、下列多项式:;,它们的公因式是_2、因式分解:_3、因式分解:_4、已知,则_5、如果(a+ )2a2+6ab+9b2,那么括号内可以填入的代数式是 _(只需填写一个)6、因式分解:x26x_;(3mn)23m+n_7、因式分解:_8、若,则多项式的值为_9、分解因式:_1

5、0、因式分解:_三、解答题(3小题,每小题5分,共计15分)1、(画图痕迹用黑色签字笔加粗加黑)如图,正方形纸片A类,B类和长方形纸片C类若干张,(1)请你选取适当数量的三种纸片,拼成一个长为、宽为的长方形,画出拼好后的图形观察拼图共用_张A类纸片,_张B类纸片,_张C类纸片,通过面积计算可以发现=_(2)请你用这三类卡片拼出面积为的长方形,画出拼好后的图形观察拼图共用_张A类纸片,_张B类纸片,_张C类纸片,通过面积计算可以发现_利用拼图,把下列多项式因式分解=_;_2、把下列各式分解因式:(1) (2)3、(1)计算:(2)因式分解:-参考答案-一、单选题1、D【分析】根据因式分解的方法解

6、答即可.【详解】解:A、x2+4(x+2)2,因式分解错误,故此选项不符合题意;B、x2-10x+16(x-4)2,因式分解错误,故此选项不符合题意;C、x3-x=x(x2-1)=x(x+1)(x-1),因式分解不彻底,故此选项不符合题意;D、2xy+6y2=2y(x+3y),因式分解正确,故此选项符合题意;故选:D.【点睛】本题考查了因式分解的方法,明确因式分解的结果应是整式的积的形式.运用提公因式法分解因式时,在提取公因式后,不要漏掉另一个因式中商是1的项.2、D【分析】观察式子中有4次方与4的和,将因式分解,再根据因式分解的结果代入式子即可求解【详解】原式故答案为:【点睛】本题考查了因式

7、分解的应用,找到是解题的关键.3、D【分析】根据因式分解的定义逐个判断即可.【详解】解:A.从等式左边到右边的变形不属于因式分解,故本选项不符合题意;B.等式的右边不是整式的积,即从等式左边到右边的变形不属于因式分解,故本选项不符合题意;C.从等式左边到右边的变形不属于因式分解,故本选项不符合题意;D.从等式左边到右边的变形属于因式分解,故本选项符合题意;故选:D.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.4、A【分析】根据多项式与多项式的乘法法则化简(x+3)(x4),再与式x2mx+n比较求出m,n的值,代入

8、mn计算即可.【详解】解:(x+3)(x4)=x2-4x+3x-12=x2-x-12,x2mx+n= x2-x-12,m=1,n=-12,mn=1+12=13.故选A.【点睛】本题考查了因式分解,以及多项式与多项式的乘法计算,熟练掌握因式分解与乘法运算是互为逆运算的关系是解答本题的关键.5、C【分析】直接利用提取公因式法以及公式法分别分解因式判断即可.【详解】解:x2+2xy+x=x(x+2y+1),故错误;x2+4x+4=(x+2)2,故正确;-x2+y2=(y+x)(y-x),故错误;故选:C.【点睛】本题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.6、D【分析】

9、本题考查的是提公因式法与公式法的综合运用,根据分解因式的定义,以及完全平方公式即可作出解答.【详解】A. m2+n2,不能因式分解; B.16m24n2=4(4m2n)(4m+2n),原因式分解错误; C. a33a2+a=a(a23a+1),原因式分解错误; D.4a24ab+b2=(2ab)2,原因式分解正确.故选:D.【点睛】此题考查了运用提公因式法和公式法进行因式分解,熟练掌握公式法因式分解是解本题的关键.7、D【分析】根据因式分解的定义解答即可.【详解】解:A、x(ab)axbx,是整式乘法,故此选项不符合题意;B、x21+y2(x1)(x+1)+y2,不是因式分解,故此选项不符合题

10、意;C、ax+bx+cx(a+b)+c,不是因式分解,故此选项不符合题意;D、y21(y+1)(y1),是因式分解,故此选项符合题意.故选D.【点睛】本题主要考查了因式分解的定义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.8、A【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据因式分解的定义逐一判断即可得答案.【详解】A、a2b2(ab)(ab),把一个多项式化为几个整式的积的形式,属于因式分解,故此选项符合题意;B、a(xy)axay,是整式的乘法,不是因式分解,故此选项不符合题意;C、x22x1x(

11、x2)1,没把一个多项式化为几个整式的积的形式,不是因式分解,故此选项不符合题意;D、(x1)(x3)x24x3,是整式的乘法,不是因式分解,故此选项不符合题意;故选:A.【点睛】本题考查了因式分解的定义,把一个多项式化成几个整式的积的形式,叫因式分解;熟练掌握定义是解题关键.9、C【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据定义即可进行判断.【详解】解:A.2x(x1)2x22x,原变形是整式乘法,不是因式分解,故此选项不符合题意;B.4m2n2(2m+n)(2mn),故此选项不符合题意;C.x2+2xx(x2),把一个多项式化为几个整式

12、的积的形式,原变形是因式分解,故此选项符合题意;D.x22x+3x(x2)+3,等式的右边不是几个整式的积的形式,不是因式分解,故此选项不符合题意;故选:C.【点睛】本题主要考查了因式分解的定义.解题的关键是掌握因式分解的定义,要注意因式分解是整式的变形,并且因式分解与整式的乘法互为逆运算.10、D【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断后利用排除法求解.【详解】解:A、a22abb2是三项,不能用平方差公式进行因式分解.B、a2b2两平方项符号相同,不能用平方差公式进行因式分解;C、a2b2两平方项符号相同,不能用平方差公式进行因式分解;D、a2b2符合平

13、方差公式的特点,能用平方差公式进行因式分解;故选:D.【点睛】本题考查平方差公式进行因式分解,熟记平方差公式的结构特点是求解的关键.平方差公式:a2b2(ab)(ab).11、D【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【详解】解:A、是多项式乘法,不是因式分解,原变形错误,故此选项不符合题意;B、右边不是整式的积的形式,不是因式分解,原变形错误,故此选项不符合题意;C、a2-2a-3=(a+1)(a-3)分解时出现符号错误,原变形错误,故此选项不符合题意;D、符合因式分解的定义,是因式分解,原变形正确,故此选项符合

14、题意.故选:D.【点睛】本题考查了因式分解.解题的关键是理解因式分解的定义:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,然后进行正确的因式分解.12、B【分析】直接利用公式法以及提取公因式法分解因式,进而判断得出答案.【详解】解:.,故此选项不合题意;.,故此选项符合题意;.,故此选项不合题意;.,故此选项不合题意;故选:.【点睛】本题考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.13、C【分析】根据因式分解是把一个多项式转化成几个整式积,可得答案.【详解】解:A、是整式的乘法,故A不符合;B、没把一个多项式转化成几个整式积,故B不符合;C、把

15、一个多项式转化成几个整式积,故C符合;D、没把一个多项式转化成几个整式积,故D不符合;故选:C.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积.14、A【分析】根据完全平方公式先确定a,再确定k即可.【详解】解:解:因为多项式能因式分解为,所以a=6.当a=6时,k=12;当a=-6时,k =-12.故选:A.【点睛】本题考查了完全平方式.掌握完全平方公式的特点,是解决本题的关键.本题易错,易漏掉k=-12.15、C【分析】把所给的式子运用提公因式和平方差公式进行因式分解,查看对应的字即可得出答案.【详解】解:,x1,ab,3,x2+1,a,x+1分别对应下列六个字:

16、化,爱,我,数,学,新,结果呈现的密码信息可能是:我爱新化,故选:C.【点睛】本题考查因式分解,解题的关键是熟练掌握提公因式法和套用平方差公式.二、填空题1、【分析】将各多项式分解因式,即可得到它们的公因式.【详解】解:, ,它们的公因式是,故答案为:.【点睛】此题考查多项式的因式分解方法,公因式的定义,熟练掌握多项式的因式分解方法是解题的关键.2、【分析】直接提取公因式整理即可.【详解】解:,故答案是:.【点睛】本题考查了提取公因式因式分解,解题的关键是找准公因式.3、【分析】先提取公因式,然后运用完全平方公式因式分解即可.【详解】解:,故答案为:.【点睛】本题主要考查提公因式因式分解以及公

17、式法因式分解,熟知完全平方公式的结构特点是解题关键.4、3【分析】根据a=2019x+2019,b=2019x+2020,c=2019x+2021,可以得到a-b、a-c、b-c的值,然后将所求式子变形,即可求得所求式子的值.【详解】解:a=2019x+2019,b=2019x+2020,c=2019x+2021,a-b=-1,a-c=-2,b-c=-1,= =3.故答案为:3.【点睛】本题考查了因式分解的应用,解答本题的关键是明确题意,利用因式分解的方法解答.5、3b【分析】先根据展开式三项进行公式化变形,利用因式分解公式得出因式分解结果,再反过来即可得解.【详解】解:a2+6ab+9b2=

18、 a2+2a3b+(3b)2=(a+3b)2,(a+3b )2a2+6ab+9b2,故答案为3b.【点睛】本题考查多项式的乘法公式,可反过来用因式分解公式来求解是解题关键.6、x(x6) (3mn)(3mn1) 【分析】把x26x 中x提取出来即可,给(3mn)23m+n先加括号,然后再运用提取公因式法分解因式即可.【详解】解:x26xx(x6);(3mn)23m+n(3mn)2(3mn)(3mn)(3mn1).故答案为:x(x6),(3mn)(3mn1).【点睛】本题主要考查了提取公因式法分解因式,正确添加括号成为解答本题的关键.7、【分析】先分组,然后根据公式法因式分解.【详解】.故答案为

19、:.【点睛】本题考查了分组分解法,公式法分解因式,掌握因式分解的方法是解题的关键.8、3【分析】将多项式多项式a2+b2+c2abbcac分解成(ab)2+(ac)2+(bc)2,再把a,b,c代入可求.【详解】解:;a2+b2+c2abbcac(2a2+2b2+2c22ab2ac2bc)(ab)2+(ac)2+(bc)2,a2+b2+c2abbcac(1+4+1)3;故答案为:3.【点睛】本题考查了因式分解的应用,关键是将多项式配成完全平方形式.9、#【分析】根据完全平方公式进行因式分解即可.【详解】解:原式,故答案为:.【点睛】本题考查了根据完全平方公式因式分解性,掌握完全平方公式是解题的

20、关键.10、【分析】先将原式变形为,再利用提公因式法分解即可.【详解】解:原式,故答案为:.【点睛】本题考查了提公因式法分解因式,熟练掌握因式分解的方法是解决本题的关键.三、解答题1、见解析;1,2,3,;(2)见解析;3,1,4,;【分析】(1)由如图要拼成一个长为、宽为的长方形,即可得出答案;利用面积公式可得出这个;(2)根据题意画出相应图形;利用面积公式可得出;根据长方形的面积分解因式.【详解】解:如图:1,2,3,;(2)解:如图:3,1,4.;【点睛】本题主要考查了因式分解的应用,解题的关键是能运用图形的面积计算的不同方法得到多项式的因式分解.2、(1);(2)【分析】(1)原式提取4,再利用平方差公式分解即可;(2)原式提取2y,再利用完全平方公式分解即可.【详解】解:(1)4(a24);(2)2y(x22xyy2)2y(xy)2.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.3、(1)-15;(2)【分析】(1)先算乘方,再算括号内的,再算乘法,最后算加减;(2)利用完全平方公式分解.【详解】解:(1)=-15;(2)=【点睛】本题考查了有理数的混合运算,因式分解,解题的关键是掌握运算法则和完全平方公式.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁