2021-2022学年人教版八年级数学下册第十九章-一次函数专题测试试题.docx

上传人:可****阿 文档编号:30730113 上传时间:2022-08-06 格式:DOCX 页数:25 大小:291.09KB
返回 下载 相关 举报
2021-2022学年人教版八年级数学下册第十九章-一次函数专题测试试题.docx_第1页
第1页 / 共25页
2021-2022学年人教版八年级数学下册第十九章-一次函数专题测试试题.docx_第2页
第2页 / 共25页
点击查看更多>>
资源描述

《2021-2022学年人教版八年级数学下册第十九章-一次函数专题测试试题.docx》由会员分享,可在线阅读,更多相关《2021-2022学年人教版八年级数学下册第十九章-一次函数专题测试试题.docx(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、人教版八年级数学下册第十九章-一次函数专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,一次函数ykxb(k,b为常数,k0)经过点A(3,2),则关于x的不等式中k(x1)b2的解集为( )

2、Ax2Bx2Cx3Dx32、如图,在平面直角坐标系中,线段AB的端点为A(2,1),B(1,2),若直线ykx1与线段AB有交点,则k的值不能是()A-2B2C4D43、如图,在平面直角坐标系中,一次函数ykx+b(k0)和ymx+n(m0)相交于点(2,1),则关于x,y的方程组的解是( )ABCD4、一次函数ymxn(m,n为常数)的图象如图所示,则不等式mxn0的解集是( )Ax2Bx2Cx3Dx35、已知一次函数y=kx+1的图象经过点A(1,3)和B(a,-1),则的值为( )A1B2CD6、下列函数中,自变量的取值范围选取错误的是( )Ay=2x2中,x取全体实数By=中,x取x-

3、1的实数Cy=中,x取x2的实数Dy=中,x取x-3的实数7、下面哪个点不在函数的图像上( )A(-2,3)B(0,-1)C(1,-3)D(-1,-1)8、如图,A、B两地相距,甲、乙两人沿同一条路线从A地到B地甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以的速度匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达甲、乙两人离开A地的距离与时间的关系如图所示,则乙出发几小时后和甲相遇?( )A小时B小时C小时D小时9、函数y中,自变量x的取值范围是( )Ax3且x0Bx3Cx3Dx310、一次函数的图象大致是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分

4、)1、直线y=2x-3与x轴的交点坐标是_,与y轴的交点坐标是_2、如图,在平面直角坐标系中,点A(2,0),直线l:yx与x轴交于点B,以AB为边作等边ABA1,过点A1作A1B1x轴,交直线l于点B1,以A1B1为边作等边A1B1A2,过点A2作A2B2x轴,交直线l于点B2,以A2B2为边作等边A2B2A3,以此类推,则点A2020的纵坐标是_3、点P(2,4)在正比例函数ykx(k是常数,且k0)的图象上,则k_4、任何一个以x为未知数的一元一次不等式都可以变形为_(a0)的形式,所以解一元一次不等式相当于在某个一次函数_的值大于0或小于0时,求_的取值范围5、直线yx3向下平移5个单

5、位长度,得到新的直线的解析式是_.三、解答题(5小题,每小题10分,共计50分)1、某公司销售A、B两种型号教学设备,每台的销售成本和售价如表:型号AB成本(万元/台)35售价(万元/台)48已知每月销售两种型号设备共20台,设销售A种型号设备x台,A、B两种型号设备全部售完后获得毛利润y万元(毛利润售价-成本)(1)求y关于x的函数关系式(不要求写自变量的取值范围);(2)若销售两种型号设备的总成本不超过80万元,那么公司如何安排销售A、B两种型号设备,售完后毛利润最大?并求出最大毛利润2、甲、乙两车匀速从同一地点到距离出发地480千米处的景点,甲车出发半小时后,乙车以每小时80千米的速度沿

6、同一路线行驶,两车分别到达目的地后停止甲、乙两车之间的距离y(千米)与甲车行驶的时间x(小时)之间的函数关系如图所示(1)甲车行驶的速度是 千米/小时(2)求乙车追上甲车后,y与x之间的函数关系式,并写出自变量x的取值范用(3)直接写出两车相距5千米时x的值3、疫情期间,乐清市某医药公司计划购进N95型和一次性成人口罩两种款式若购进N95型10箱和一次性成人口罩20箱,需要32500元;若购进N95型30箱和一次性成人口罩40箱,需要87500元 (1)N95型和一次性成人口罩每箱进价分别为多少元? (2)由于疫情严峻急需口罩,老板决定再次购进N95型和一次性成人口罩共80箱,口罩工厂对两种产

7、品进行了价格调整,N95型的每箱进价比第一次购进时提高了10%,一次性成人口罩的每箱进价按第一次进价的八折;如果药店此次用于购进N95型和一次性成人口罩两种型号的总费用不超过115000元,则最多可购进N95型多少箱? (3)若销售一箱N95型,可获利500元;销售一箱一次性成人口罩,可获利100元,在(2)的条件下,如何进货可使再次购进的口罩获得最大的利润?最大的利润是多少?4、已知一次函数yx+2的图象过点A(a,6)(1)求a的值;(2)在如图所示的平面直角坐标系中画出它的图象5、为落实“精准扶贫”,某村在政府的扶持下建起了蔬菜大棚基地,准备种植A,B两种蔬菜,若种植20亩A种蔬菜和30

8、亩B种蔬菜,共需投入18万元;若种植30亩A种蔬菜和20亩B种蔬菜,共需投入17万元(1)种植A,B两种蔬菜,每亩各需投入多少万元?(2)经测算,种植A种蔬菜每亩可获利0.4万元,种植B种蔬菜每亩可获利0.6万元,村里把50万元扶贫款全部用来种植这两种蔬菜,总获利w万元,设种植A种蔬菜m亩,求w关于m的函数关系式;(3)在(2)的条件下,若要求A种蔬菜的种植面积不能少于B种蔬菜种植面积的2倍,请你设计出总获利最大的种植方案,并求出最大总获利-参考答案-一、单选题1、A【解析】【分析】根据一次函数图象平移规律可得函数y=kx+b图像向右平移1个单位得到平移后的解析式为y=k(x1)+b,即可得出

9、点A平移后的对应点,根据图象找出一次函数y=k(x1)+b的值小于2的自变量x的取值范围,据此即可得答案【详解】解:函数y=kx+b图像向右平移1个单位得到平移后的解析式为y=k(x-1)+b,A(3,2)向右平移1个单位得到对应点为(2,2),由图象可知,y随x的增大而减小,关于的不等式的解集为,故选:A【点睛】本题考查一次函数的性质、一次函数图象的平移及一次函数与不等式,正确理解函数的性质、会观察图象,熟练掌握平移规律是解题的关键2、B【解析】【分析】当直线y=kx1过点A时,求出k的值,当直线y=kx1过点B时,求出k的值,介于二者之间的值即为使直线y=kx1与线段AB有交点的x的值【详

10、解】解:当直线y=kx1过点A时,将A(2,1)代入解析式y=kx1得,k=1,当直线y=kx1过点B时,将B(1,2)代入解析式y=kx1得,k=3,|k|越大,它的图象离y轴越近,当k3或k-1时,直线y=kx1与线段AB有交点故选:B【点睛】本题考查了两直线相交或平行的问题,解题的关键是掌握AB是线段这一条件,不要当成直线3、B【解析】【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标解决问题【详解】解:一次函数y=kx+b和y=mx+n相交于点(2,-1),关于x、y的方程组的解是故选:B【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是使方程组中两个方程同时成立的

11、一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标4、D【解析】【分析】观察直线位于x轴及x轴上方的图象所对应的自变量的值即可完成解答【详解】由图象知:不等式的解集为x3故选:D【点睛】本题考查了一次函数与一元一次不等式的关系,数形结合是解答本题的关键5、C【解析】【分析】代入A点坐标求一次函数解析式,再根据B点纵坐标代入解析式即可求解【详解】解:一次函数y=kx+1的图象经过点A(1,3),解得k=2,一次函数解析式为:,B(a,-1)在一次函数上,解得,故选:C【点睛】本题主要考查了一次函数的基本概念以及基本性质,解本题的要

12、点在于求出直线的解析式,从而得到答案6、D【解析】【分析】根据分式的分母不能为0、二次根式的被开方数的非负性即可得【详解】解:A、中,取全体实数,此项正确;B、,即,中,取的实数,此项正确;C、,中,取的实数,此项正确;D、,且,中,取的实数,此项错误;故选:D【点睛】本题考查了函数自变量、分式和二次根式,熟练掌握分式和二次根式有意义的条件是解题关键7、D【解析】【分析】将A,B,C,D选项中的点的坐标分别代入,根据图象上点的坐标性质即可得出答案【详解】解:A将(-2,3)代入,当x=-2时,y=3,此点在图象上,故此选项不符合题意;B将(0,-1)代入,当x=0时,y=-1,此点在图象上,故

13、此选项不符合题意;C将(1,-3)代入,当x=1时,y=-3,此点在图象上,故此选项不符合题意;D将(-1,-1)代入,当x=-1时,y=1,此点不在图象上,故此选项符合题意故选:D【点睛】本题考查了一次函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式,反之,只要满足函数解析式就一定在函数的图象上8、A【解析】【分析】先标记字母如图,求出点C,D,E坐标,利用待定系数法求OE与CD解析式,根据路程相等列方程,解方程求出时间x,再求出乙追上甲的时间即可【详解】解:乙以的速度匀速行驶1小时到C,C(2,2),点D(4,20)点E(5,20),设OE解析式为,CD解析式为,点E在

14、图像上,解得,OE解析式为,点C、D在图像上,解得,CD解析式为,乙出发后和甲相遇路程相等得,解得,乙出发时后和甲相遇故选择A【点睛】本题考查一次函数行程问题应用,待定系数法求解析式,解二元一次方程组,解题关键是根据路程相等列出方程9、B【解析】【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不为0列式计算即可【详解】解:函数y,解得:x3故选:B【点睛】本题考查函数基本知识,解题的关键是掌握二次根式和分式有意义的条件10、C【解析】【分析】根据一次函数yax+b中的a、b的符号来判定其图象所经过的象限【详解】解:一次函数yx2中的x的系数为1,10,该函数图象经过第一、三象限

15、又20,该函数图象与y轴交于负半轴,综上所述,该函数图象经过第一、三、四象限故选:C【点睛】本题考查了一次函数的图象,解题的关键是要求学生从图象中读取信息的数形结合能力二、填空题1、 (,0)#(1.5,0) (0,3)【解析】【分析】分别根据x、y轴上点的坐标特点进行解答即可【详解】令y=0,则2x3=0,解得:x,故直线与x轴的交点坐标为:(,0);令x=0,则y=3,故直线与y轴的交点坐标为:(0,3)故答案为(,0),(0,3)【点睛】本题考查了x、y轴上点的坐标特点及一次函数图象的性质,熟练掌握一次函数与坐标轴交点问题是解题的关键2、【解析】【分析】先根据解析式求得B的坐标,即可求得

16、AB1,根据等边三角形的性质以及含30角的直角三角形的性质,分别求得A1的纵坐标为,A2的纵坐标为,A3的纵坐标为,进而得到An的纵坐标为,据此可得点A2020的纵坐标【详解】直线l:yx与x轴交于点B,令y=0,即yx=0,解得:x=1B(1,0),OB1,A(2,0),OA2,AB1,ABA1是等边三角形,过A1点作于 ,如图所示,则,A1(,),AB,把y代入yx,求得x,B1(,),A1B12,过A2点作于 , 是等边三角形则是的中点,且C2点的横坐标为:,A2(,),即A2(,),A3B3AB,把y代入yx,得x,B2(,),A2B24,过A3点作于 ,是等边三角形,则是的中点,且C

17、3点的横坐标为:,A3(,),即A3( ,),一般地,An的纵坐标为,点A2020的纵坐标是,故答案为【点睛】本题是规律探索题,考查了一次函数的图象,等边三角形的性质,从特殊出发得到一般性结论是本题的关键3、2【解析】【分析】把点P(2,4)代入正比例函数ykx中可得k的值.【详解】解:点P(2,4)在正比例函数ykx(k是常数,且k0)的图象上,42k,解得:k2,故答案为:2.【点睛】本题考查了用待定系数法求正比例函数解析式,经过函数的某点一定在函数的图象上,理解正比例函数的定义是解题的关键4、 ax+b0或ax+b0或ax+b0或ax+b0;y=ax+b;自变量【点睛】本题考查了一次函数

18、与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b(k0)的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b(k0)在x轴上(或下)方部分所有的点的横坐标所构成的集合5、yx-2【解析】【分析】根据平移的性质“左加右减,上加下减”,即可求出平移后的直线解析式【详解】解:直线yx3向下平移5个单位长度,得到新的直线的解析式是yx3-5=yx-2故答案为:yx-2【点睛】本题考查的是一次函数图象的平移,熟练掌握“左加右减,上加下减”是解答本题的关键三、解答题1、(1)y=-2x+60;(2)公司生产A,B两种品牌设备各10台,售完后获利最大,最大毛

19、利润为40万元【解析】【分析】(1)设销售A种品牌设备x台,B种品牌设备(20-x)台,算出每台的利润乘对应的台数,再合并在一起即可求出总利润;(2)由“生产两种品牌设备的总成本不超过80万元”,列出不等式,再由(1)中的函数的性质得出答案【详解】解:(1)设销售A种型号设备x台,则销售B种型号设备(20-x)台,依题意得:y=(4-3)x+(8-5)(20-x),即y=-2x+60;(2)3x+5(20-x)80,解得x10-20,当x=10时,y最大=40万元故公司生产A,B两种品牌设备各10台,售完后获利最大,最大毛利润为40万元【点睛】本题考查了一次函数的应用,一元一次不等式的应用,注

20、意题目蕴含的数量关系,正确列式解决问题2、(1)60;(2)AB的解析式为y=20x-40(2x6.5);BC的解析式为y=-60x+480(6.5x8);(3)甲车出发112小时或74小时或94小时或9512小时两车相距5千米【解析】【分析】(1)利用先出发半小时行驶的路程为30千米,可得答案; (2)分别求出相应线段的两个端点的坐标,再运用待定系数法解答即可; (3)结合运动状态,分四种情况讨论,当甲车出发而乙车还没有出发时,即0x0.5, 当乙车追上甲车时,时间为2小时,当0.5x2时,当乙车超过甲车时,而乙车到达终点时,甲车行驶时间为6.5小时,当2x6.5时,当乙车到达后,甲车继续行

21、驶,当6.5x8时,再列方程解方程可得答案【详解】解:(1)甲行驶的速度为:300.5=60(千米/小时), 故答案为:60 (2)如图所示: 设甲出发x小时后被乙追上,根据题意得: 60x=80(x-0.5), 解得x=2, 即甲出发2小时后被乙追上, 点A的坐标为(2,0), 而48080+0.5=6.5(时), 即点B的坐标为(6.5,90), 设AB的解析式为y=kx+b,由点A,B的坐标可得:2k+b=06.5k+b=90,解得k=20b=-40, 所以AB的解析式为y=20x-40(2x6.5); 乙车的速度每小时为60千米 kBC=-60, 而乙车的行驶时间为:48060=8,

22、C(8,0), 设BC的解析式为y=-60x+c, 则-608+c=0,解得c=480, 故BC的解析式为y=-60x+480(6.5x8); (3)根据题意得:当甲车出发而乙车还没有出发时,即0x0.5, x=560=112, 当乙车追上甲车时,时间为2小时,当0.5x2时,60x-80(x-0.5)=5, 解得:x=74当乙车超过甲车时,而乙车到达终点时,甲车行驶时间为6.5小时,当2x6.5时,80(x-0.5)-60x=5, 解得:x=94 当乙车到达后,甲车继续行驶,当6.5x8时,60x=480-5, 解得:x=9512 答:甲车出发112小时或74小时或94小时或9512小时两车

23、相距5千米【点睛】本题是一次函数的应用,属于行程问题,考查了利用待定系数法求一次函数的解析式,并与行程问题的路程、时间、速度相结合.读出图形中的已知信息,运用了数形结合的思想解决函数问题是解本题的关键3、(1)N95型和一次性成人口罩每箱进价分别为2250元、500元;(2)最多可购进N95型40箱;(3)采购N95型40个,一次性成人口罩40个可获得最利润为24000元【解析】【分析】(1)设N95型每箱进价x元,一次性成人口罩每箱进价y元,依题意得10x+20y=32500,30x+40y=87500,联立求解即可; (2)设购进N95型a箱,依题意得:2250(1+10%)a+50080

24、%(80-a)115000,求出a的范围,结合a为正整数可得a的最大值; (3)设购进的口罩获得最大的利润为w,依题意得:w500a+100(80-a),然后对其进行化简,结合一次函数的性质进行解答【详解】(1)解:设N95型每箱进价x元,一次性成人口罩每箱进价y元,依题意得: 10x+20y=3250030x+40y=87500 ,解得: x=2250y=500 ,答:N95型和一次性成人口罩每箱进价分别为2250元、500元(2)解:设购进N95型a箱,则一次性成人口罩为(80a)套,依题意得: 2250(1+10%)a+50080%(80a)115000 解得:a40a取正整数,0a40

25、a的最大值为40答:最多可购进N95型40箱(3)解:设购进的口罩获得最大的利润为w, 则依题意得:w500a+100(80a)400a+8000,又0a40,w随a的增大而增大,当a40时,W40040+800024000元即采购N95型40个,一次性成人口罩40个可获得最利润为24000元答:最大利润为24000元【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)根据各数量之间的关系,找出w关于a的函数关系式4、(1)a=8;(2)见解析【解

26、析】【分析】(1)利用一次函数图象上点的坐标特征可得出6a+2,解之即可得出a的值;(2)利用一次函数图象上点的坐标特征可求出一次函数yx+2的图象与两坐标轴的交点坐标,经过两点(0,2),(2,0)即可作出一次函数yx+2的图象【详解】解:(1)一次函数yx+2的图象过点A(a,6),6a+2,a8(2)当x0时,y10+22,一次函数yx+2的图象过点(0,2);当y0时,x+20,解得:x2,一次函数yx+2的图象过点(2,0)经过两点(0,2),(2,0)作一次函数yx+2的图象,如图所示【点睛】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键5、(1)种植A

27、种蔬菜每亩需投入0.3万元,种植B种蔬菜每亩需投入0.4万元;(2)w=-0.05m+75(0m5003);(3)当种植A种蔬菜100亩,B种蔬菜50亩时获利最大,最大总获利为70万元【解析】【分析】(1)设种植A种蔬菜每亩需投入x万元,种植B种蔬菜每亩需投入y万元根据等量关系种植20亩A种蔬菜和30亩B种蔬菜,共需投入18万元;若种植30亩A种蔬菜和20亩B种蔬菜,共需投入17万元列二元一次方程组问题可解;(2)设种植A种蔬菜m亩,则种植B种蔬菜(50-0.3m)0.4亩,根据两种蔬菜的利润即可得到w与m之间函数关系式;(3)根据A种蔬菜的种植面积不能少于B种蔬菜种植面积的2倍得到m的取值范

28、围,讨论w最大值【详解】解:(1)设种植A种蔬菜每亩需投入x万元,种植B种蔬菜每亩需投入y万元20x+30y=1830x+20y=17,解方程组得:x=0.3y=0.4,种植A种蔬菜每亩需投入0.3万元,种植B种蔬菜每亩需投入0.4万元;(2)根据题意得:w=0.4m+0.6(50-0.3m)0.4,w=-0.05m+75(0m5003);(3)A种蔬菜的种植面积不能少于B种蔬菜种植面积的2倍m250-0.3m0.4,m100,w=-0.05m+75,k=-0.050,w随m的增大而减小,当m=100时:w最大=-5+75=70,50-0.31000.4=50,当种植A种蔬菜100亩,B种蔬菜50亩时获利最大,最大总获利为70万元【点睛】本题为一次函数实际应用问题,考查了二元二次方程组、不等式组、列一次函数关系式和根据自变量取值范围讨论函数最值

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁