《2021-2022学年沪教版七年级数学第二学期第十四章三角形定向攻克试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年沪教版七年级数学第二学期第十四章三角形定向攻克试题(含答案解析).docx(35页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、沪教版七年级数学第二学期第十四章三角形定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列长度的三条线段能组成三角形的是( )A3,4,7B3,4,8C3,4,5D3,3,72、如图,点F,C在B
2、E上,ACDF,BFEC,ABDE,AC与DF相交于点G,则与2DFE相等的是()AA+DB3BC180FGCDACE+B3、在下列长度的四根木棒中,能与3cm,9cm的两根木棒首尾顺次相接钉成一个三角形的是( )A3cmB6cmC10cmD12cm4、如图,等边中,D为AC中点,点P、Q分别为AB、AD上的点,在BD上有一动点E,则的最小值为( )A7B8C10D125、如图,AC,BD相交于点O添加一个条件,不一定能使的是( )ABCD6、下列三个说法:有一个内角是30,腰长是6的两个等腰三角形全等;有一个内角是120,底边长是3的两个等腰三角形全等;有两条边长分别为5,12的两个直角三角
3、形全等其中正确的个数有( )A3B2C1D07、已知长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF,将BEF对折,点B落在直线EF上的点B处,得折痕EM,将AEF对折,点A落在直线EF上的点A处,得折痕EN,则图中与BME互余的角有()A2个B3个C4个D5个8、如图,已知为的外角,那么的度数是( )A30B40C50D609、如图,ABC中,ABC45,CDAB于D,BE平分ABC,且BEAC于E,与CD相交于点F,DHBC于H,交BE于G,下列结论中正确的是( )BCD为等腰三角形;BFAC;CEBF;BHCEABCD10、已知等腰三角形有一个角为50,则这个等腰三角形的底角度
4、数是( )A65B65或80C50或80D50或65第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,的平分线交于点,是上的一点,的平分线交于点,且,下列结论:平分;与互余的角有个;若,则其中正确的是_(请把正确结论的序号都填上)2、如图,在ABC中,C62,ABC两个外角的角平分线相交于G,则G的度数为_3、如图,在ABC中,ACB=90,AC=BC,BECE于点E,ADCE于点D若AD=3cm,BE=1cm,则DE=_4、已知ABC的面积是12,AB=AC=5,AD是BC边上的中线,E,P分别是AC,AD上的动点,则CP+EP的最小值为_5、如图,在RtABC中
5、,ACB90,BAC30,BC6,将ABC绕点C顺时针旋转30得到ABC,A、B分别与A、B对应,CA交AB于点M,则CM的长为 _三、解答题(10小题,每小题5分,共计50分)1、如图,为等边三角形,D是BC中点,CE是的外角的平分线求证:2、如图,E为AB上一点,BDAC,ABBD,ACBE求证:BCDE3、中,以点为中心,分别将线段,逆时针旋转得到线段,连接,延长交于点(1)如图1,若,的度数为_;(2)如图2,当吋,依题意补全图2;猜想与的数量关系,并加以证明4、如图,在中,AD是角平分线,E是AB边上一点,连接ED,CB是的平分线,ED的延长线与CF交于点F(1)求证:;(2)若,则
6、_度5、阅读填空,将三角尺(MPN,MPN=90)放置在ABC上(点P在ABC内),如图所示,三角尺的两边PM、PN恰好经过点B和点C,我们来研究ABP与ACP是否存在某种数量关系(1)特例探索:若A=50,则PBC+PCB= 度,ABP+ACP= 度(2)类比探索:ABP、ACP、A的关系是 (3)变式探索:如图所示,改变三角尺的位置,使点P在ABC外,三角尺的两边PM、PN仍恰好经过点B和点C,则ABP、ACP、A的关系是 6、如图,在ABC中,BAC90,ABAC,射线AE交BC于点P,BAE15;过点C作CDAE于点D,连接BE,过点E作EFBC交DC的延长线于点F(1)求F的度数;(
7、2)若ABE75,求证:BECF7、如图,已知点E、C在线段BF上,求证:ABCDEF8、已知:在ABC中,AD平分BAC,AE=AC求证:ADCE9、如图,在中,AD平分,于点E求证:10、如图,在等边中,D为BC边上一点,连接AD,将沿AD翻折得到,连接BE并延长交AD的延长线于点F,连接CF(1)若,求的度数;(2)若,求的大小;(3)猜想CF,BF,AF之间的数量关系,并证明-参考答案-一、单选题1、C【分析】根据组成三角形的三边关系依次判断即可【详解】A、 3,4,7中3+4=7,故不能组成三角形,与题意不符,选项错误B、 3,4,8中3+48,故不能组成三角形,与题意不符,选项错误
8、C、 3,4,5中任意两边之和都大于第三边,任意两边之差都小于第三边,故能组成三角形,符合题意,选项正确D、 3,3,7中3+37,故不能组成三角形,与题意不符,选项错误故选:C【点睛】本题考查了三角形的三边关系,在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边2、C【详解】由题意根据等式的性质得出BCEF,进而利用SSS证明ABC与DEF全等,利用全等三角形的性质得出ACBDFE,最后利用三角形内角和进行分析解答【分析】解:BFEC,BF+FCEC+FC,BCEF,在ABC与DEF中,ABCDEF(SSS),ACBDFE,2DFE180FGC,故选:C【点睛】本题考查全等三角形
9、的判定与性质,其中全等三角形的判定方法有:SSS;SAS;ASA;AAS;以及HL(直角三角形的判定方法)3、C【分析】设第三根木棒的长度为cm,再确定三角形第三边的范围,再逐一分析各选项即可得到答案.【详解】解:设第三根木棒的长度为cm,则 所以A,B,D不符合题意,C符合题意,故选C【点睛】本题考查的是三角形的三边的关系,掌握“利用三角形的三边关系确定第三边的范围”是解本题的关键.4、C【分析】作点关于的对称点,连接交于,连接,此时的值最小,最小值,据此求解即可【详解】解:如图,是等边三角形,D为AC中点,作点关于的对称点,连接交于,连接,此时的值最小最小值,是等边三角形,的最小值为故选:
10、C【点睛】本题考查等边三角形的性质和判定,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型5、C【分析】直接利用直角三角形全等的判定定理(定理)即可判断选项;先根据等腰三角形的性质可得,再根据三角形全等的判定定理(定理)即可判断选项;直接利用三角形全等的判定定理(定理)即可判断选项,由此即可得出答案【详解】解:当添加条件是时,在和中,则选项不符题意;当添加条件是时,在和中,则选项不符题意;当添加条件是时,在和中,则选项不符题意;当添加条件是时,不一定能使,则选项符合题意;故选:C【点睛】本题考查了三角形全等的判定、等腰三角形的性质,熟练掌握三角形全等的判定方法是解
11、题关键6、C【分析】根据三角形全等的判定方法,等腰三角形的性质和直角三角形的性质判断即可【详解】解:当一个是底角是30,一个是顶角是30时,两三角形就不全等,故本选项错误;有一个内角是120,底边长是3的两个等腰三角形全等,本选项正确;当一条直角边为12,一条斜边为12时,两个直角三角形不全等,故本选项错误;正确的只有1个,故选:C【点睛】本题考查了全等三角形的判定定理,等腰三角形的性质和直角三角形的性质,熟练掌握全等三角形的判定定理是解题的关键7、C【分析】先由翻折的性质得到AEN=AEN,BEM=BEM,从而可知NEM=180=90,然后根据余角的定义找出BME的余角即可【详解】解:由翻折
12、的性质可知:AEN=AEN,BEM=BEMNEM=AEN+BEM=AEA+BEB=180=90由翻折的性质可知:MBE=B=90由直角三角形两锐角互余可知:BME的一个余角是BEMBEM=BEM,BEM也是BME的一个余角NBF+BEM=90,NEF=BMEANE、ANE是BME的余角综上所述,BME的余角有ANE、ANE、BEM、BEM故选:C【点睛】本题主要考查的是翻折的性质、余角的定义,掌握翻折的性质是解题的关键8、B【分析】根据三角形的外角性质解答即可【详解】解:ACD60,B20,AACDB602040,故选:B【点睛】此题考查三角形的外角性质,关键是根据三角形外角性质解答9、C【分
13、析】根据ABC45,CDAB可得出BDCD;利用AAS判定RtDFBRtDAC,从而得出BFAC;再利用AAS判定RtBEARtBEC,即可得到CEBF;由CEBF,BHBC,在三角形BCF中,比较BF、BC的长度即可得到CEBH【详解】解:CDAB,ABC45,BCD是等腰直角三角形BDCD,故正确;在RtDFB和RtDAC中,DBF90BFD,DCA90EFC,且BFDEFC,DBFDCA又BDFCDA90,BDCD,DFBDACBFAC,故正确;在RtBEA和RtBEC中BE平分ABC,ABECBE又BEBE,BEABEC90,RtBEARtBECCEACBF,故正确;CEACBF,BH
14、BC,在BCF中,CBEABC22.5,DCBABC45,BFC112.5,BFBC,CEBH,故错误;故选:C【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL在复杂的图形中有45的角,有垂直,往往要用到等腰直角三角形,要注意掌握并应用此点10、D【分析】可以是底角,也可以是顶角,分情况讨论即可【详解】当角为底角时,底角就是,当角为等腰三角形的顶角时,底角为,因此这个等腰三角形的底角为或故选:D【点睛】本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键二、填空题1、【分析
15、】由BDBC及BD平分GBE,可判断正确;由CB平分ACF、AECF及的结论可判断正确;由前两个的结论可对作出判断;由AECF及ACBG、三角形外角的性质可求得BDF,从而可对作出判断【详解】BD平分GBEEBD=GBD=GBEBDBCGBD+GBC=CBD=90DBE+ABC=90GBC=ABCBC平分ABG故正确CB平分ACFACB=GCBAECFABC=GCBACB=GCB=ABC=GBCACBG故正确DBE+ABC=90,ACB=GCB=ABC=GBC与DBE互余的角共有4个 故错误ACBG,A=GBE=AECFBGD=180GBE=180BDF=GBD+BGD=故错误即正确的结论有故
16、答案为:【点睛】本题考查了平行线的判定与性质,互余概念,垂直的定义,角平分线的性质等知识,掌握这些知识并正确运用是关键2、59【分析】先利用三角形内角和定理求出CAB+CBA=180-C=118,从而利用三角形外角的性质求出DAB+EBA=2C+CAB+CBA=242,再由角平分线的定义求出,由此求解即可【详解】解:C=62,CAB+CBA=180-C=118,DAB=C+CBA,EBA=C+CAB,DAB+EBA=2C+CAB+CBA=242,ABC两个外角的角平分线相交于G,G=180-GAB-GBA=59,故答案为:59【点睛】本题主要考查了三角形内角和定理,三角形外角的性质,角平分线的
17、定义,熟知相关知识是解题的关键3、2cm【分析】易证CAD=BCE,即可证明BECDAC,可得CD=BE,CE=AD,根据DE=CE-CD,即可解题【详解】解:ACB=90,BCE+DCA=90ADCE,DAC+DCA=90BCE=DAC,在BEC和DAC中,BCE=DAC,BEC=CDA=90BC=AC,BECDAC(AAS),CE=AD=3cm,CD=BE=1cm,DE=CE-CD=3-1=2 cm故答案是:2cm【点睛】此题是三角形综合题,主要考查了全等三角形的判定,全等三角形对应边相等的性质,本题中求证CDABEC是解题的关键4、【分析】作BMAC于M,交AD于P,根据等腰三角形的性质
18、得到ADBC,求得点B,C关于AD为对称,得到BP=CP,根据垂线段最短得出CP+EE=BP+EP=BEBM,根据数据线的面积公式即可得到结论【详解】解:作BMAC于M,交AD于P,ABC是等腰三角形,AD是BC边上的中线,ADBC,AD是BC的垂直平分线,点B,C关于AD为对称,BP=CP,根据垂线段最短得出:CP+EP=BP+EP=BEBM,AC=BC=5,SABC=BCAD=ACBM=12,BM=AD=,即EP+CP的最小值为,故答案为:【点睛】本题考查了等腰三角形的性质和轴对称等知识,熟练掌握等腰三角形和轴对称的性质是本题的关键5、【分析】根据旋转的性质可得,所以,由题意可得:,为等边
19、三角形,即可求解【详解】解:,由旋转的性质可得,为等边三角形,故答案为:【点睛】此题考查了直角三角形的性质,旋转的性质以及等边三角形的判定与性质,解题的关键是灵活掌握相关基本性质进行求解三、解答题1、证明见解析.【分析】过D作DGAC交AB于G,由等边三角形的性质和平行线的性质得到BDGBGD60,于是得到BDG是等边三角形,再证明AGDDCE即可得到结论.【详解】证明:过D作DGAC交AB于G,ABC是等边三角形,ABAC,BACBBAC60,又DGAC,BDGBGD60,BDG是等边三角形,AGD180BGD120,DGBD,点D为BC的中点,BDCD,DGCD,EC是ABC外角的平分线,
20、ACE(180ACB)60,BCEACBACE120AGD,ABAC,点D为BC的中点,ADBADC90,又BDG60,ADE60,ADGEDC30,在AGD和ECD中,AGDECD(ASA)ADDE【点睛】本题是三角形综合题,主要考查了平行线的性质,全等三角形的性质与判定,等边三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键2、见解析【分析】根据平行线的性质可得,利用全等三角形的判定定理即可证明【详解】证明:, 在和中, 【点睛】题目主要考查全等三角形的判定定理和平行线的性质,熟练掌握全等三角形的判定定理是解题关键3、(1)120(2)图形见解析;【分析】(1)根据进而判断出点
21、E在边AB上,得出ADEABC(SAS),进而得出AED=ACB=90最后用三角形的外角的性质即可得出结论;(2)依题意补全图形即可;先判断出ADEABC(SAS),进而得出AEF=90,即可判断出RtAEFRtACF,进而求出CAF=CAE=30,即可得出结论(1)(1)如图1,在RtABC中,B=30,BAC=60,由旋转知,CAE=60=CAB,点E在边AB上,AD=AB,AE=AC,ADEABC(SAS),AED=ACB=90,CFE=B+BEF=30+90=120,故答案为120;(2)(2)依题意补全图形如图2所示,如图2,连接AF,BAD=CAE,EAD=CAB,AD=AB,AE
22、=AC,ADEABC(SAS),AED=C=90,AEF=90,RtAEFRtACF(HL),EAF=CAF,CAF=CAE=30,在RtACF中,CF=AF,且AC2+CF2=AF2,【点睛】此题是三角形综合题,主要考查了旋转的性质,全等三角形的判定和性质,三角形的外角的性质,含30度角的直角三角形的性质,勾股定理,判断出ADEABC是解本题的关键4、(1)见解析,(2)46【分析】(1)根据等腰三角形的性质和角平分线得到BACBBCF,由AD是角平分线,得到BDCD,证BDECDF即可;(2)根据全等三角形的性质得到DEDFDA,根据求得DAB,进而求出B的度数即可【详解】(1)证明:,B
23、ACB,CB是的平分线,ACBBCF,BBCF,AD是角平分线,ABAC,BDCD,BDECDF,BDECDF(AAS);(2)BDECDF;EDFD,,EDAD,BACBBCF23,故答案为:46【点睛】本题考查了等腰三角形的性质和全等三角形的判定与性质,解题关键是熟练运用相关知识进行推理证明和计算5、(1)90,40 ;(2)ABP+ACP+A=90;(3)A+ACPABP=90【分析】(1)由三角形内角和为180计算和中的角的关系即可(2)由(1)所得即可得出ABP、ACP、A的关系为ABP+ACP+A=90(3)由三角形外角的性质即可推出A+ACPABP=90【详解】(1)在中MPN=
24、90PBC+PCB=180-MPN=180-90=90在中A+ABC+ACB=180又ABC=PBC+ABP,ACB=ACP+BCPA+PBC+ABP +ACP+BCP =180PBC+PCB=90,A=50ABP +ACP=180-90-50=40(2)由(1)问可知A+PBC+ABP +ACP+BCP =180又PBC+PCB=90A+ABP +ACP=180-(PBC+PCB)=180-90=90(3)如图所示,设PN与AB交于点HA+ACP=AHP又ABP+MPN =AHPA+ACP=ABP+MPN又MPN =90A+ACP =90+ABPA+ACPABP=90【点睛】本题考查了三角形
25、的性质以及三角尺的角度计算问题,三角板的角度分别为90,45,45;90,60,30两种直角三角尺,三角形内角和是180,三角形的一个外角等于与它不相邻的两个内角的和6、(1);(2)证明见详解【分析】(1)根据三角形内角和及等腰三角形的性质可得,由各角之间的关系及三角形内角和定理可得,最后由平行线的性质即可得出;(2)由题意及各角之间的关系可得,得出,利用平行线的判定定理即可证明【详解】解:(1),;(2),由(1)可得,(内错角相等,两直线平行)【点睛】题目主要考查平行线的判定与性质,三角形内角和定理等,熟练掌握平行线的判定与性质是解题关键7、见解析【分析】由平行线的性质可证明再由,可推出
26、最后即可利用“ASA”直接证明【详解】证明:,即在和中,【点睛】本题考查三角形全等的判定,平行线的性质,线段的和与差掌握三角形全等的判定条件是解答本题的关键8、见解析【分析】先根据角平分线的定义得到BAD=BAC,再根据等腰三角形的性质和三角形外角定理得到E=BAC,从而得到BAD=E,即可证明ADCE【详解】解:AD平分BAC,BAD=BAC,AE=AC,E=ACE,E+ACE=BAC,E=BAC,BAD=E,ADCE【点睛】本题考查了角平分线的定义,等腰三角形的性质,平行线的判定,三角形外角定理,熟知相关定理并灵活应用是解题关键9、证明见解析.【分析】延长CE交AB于F,求出AECAEF,
27、FAECAE,根据ASA证FAECAE,推出ACEAFC,根据三角形外角性质得出AFCBECD,代入即可【详解】证明:延长CE交AB于F,CEAD,AECAEF,AD平分BAC,FAECAE,在FAE和CAE中, ,FAECAE(ASA),ACEAFC,AFCBECD,ACEBECD【点睛】本题考查了全等三角形的性质和判定,三角形的外角性质等知识点,关键是作辅助线后求出AFCACE10、(1)20;(2);(3)AF= CF+BF,理由见解析【分析】(1)由ABC是等边三角形,得到AB=AC,BAC=ABC=60,由折叠的性质可知,EAD=CAD=20,AC=AE,则BAE=BAC-EAD-C
28、AD=20,AB=AE,CBF=ABE-ABC=20;(2)同(1)求解即可;(3)如图所示,将ABF绕点A逆时针旋转60得到ACG,先证明AEFACF得到AFE=AFC,然后证明AFE=AFC=60,得到BFC=120,即可证明F、C、G三点共线,得到AFG是等边三角形,则AF=GF=CF+CG=CF+BF【详解】解:(1)ABC是等边三角形,AB=AC,BAC=ABC=60,由折叠的性质可知,EAD=CAD=20,AC=AE,BAE=BAC-EAD-CAD=20,AB=AE,CBF=ABE-ABC=20;(2)ABC是等边三角形,AB=AC,BAC=ABC=60,由折叠的性质可知,AC=A
29、E, ,AB=AE,;(3)AF= CF+BF,理由如下:如图所示,将ABF绕点A逆时针旋转60得到ACG,AF=AG,FAG=60,ACG=ABF,BF=CG在AEF和ACF中,AEFACF(SAS),AFE=AFC,CBF+BCF+BFD+CFD=180,CAF+CFA+ACD+CFD=180,BFD=ACD=60,AFE=AFC=60,BFC=120,BAC+BFC=180,ABF+ACF=180,ACG+ACF=180,F、C、G三点共线,AFG是等边三角形,AF=GF=CF+CG=CF+BF【点睛】本题主要考查了等边三角形的性质与判定,旋转的性质,折叠的性质,全等三角形的性质与判定,三角形内角和定理,熟知相关知识是解题的关键