《2022年最新强化训练沪科版九年级数学下册第26章概率初步定向攻克试卷(精选含答案).docx》由会员分享,可在线阅读,更多相关《2022年最新强化训练沪科版九年级数学下册第26章概率初步定向攻克试卷(精选含答案).docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、沪科版九年级数学下册第26章概率初步定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、有四张形状相同的卡片,正面分别印着矩形、菱形、等边三角形、圆四个图案,卡片背面全一样,随机抽出一张,刚好抽到正面
2、的图案是中心对称图形的概率是()ABCD12、书架上放着两本散文和一本数学书,小明从中随机抽取一本,抽到数学书的概率是()A1BCD3、一个不透明的袋子里装有黄球18个和红球若干,小明通过多次摸球试验后发现摸到红球的频率稳定在0.4左右,则袋子里有红球( )个A12B15C18D544、下列说法正确的是()A同时投掷两枚相同的硬币,出现“一正一反”的概率是B事件“两个正数相加,和是正数”是必然事件C数2和8的比例中项是4D同一张底片洗出来的两张照片是位似图形5、下列说法正确的是( )A“明天降雨的概率是80%”表示明天有80%的时间都在降雨B“抛一枚硬币正面朝上的概率为”表示每抛两次就有一次正
3、面朝上C“彩票中奖的概率是1%”表示买100张彩票肯定会中奖D“抛一枚均匀的正方体骰子,朝上的点数是2的概率为”表示随着抛掷次数的增加,“拋出朝上的点数是2”这一事件发生的概率稳定在附近6、在一个口袋中有2个完全相同的小球,它们的标号分别为1,2从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和是3的概率是( )ABCD7、下列事件是必然事件的是()A明天一定是晴天B购买一张彩票中奖C小明长大会成为科学家D13人中至少有2人的出生月份相同8、不透明袋中装有3个红球和5个绿球,这些球除颜色外无其他差别从袋中随机摸出1个球是红球的概率为( )ABCD9、下列事件
4、,你认为是必然事件的是( )A打开电视机,正在播广告B今天星期二,明天星期三C今年的正月初一,天气一定是晴天D一个袋子里装有红球1个、白球9个,每个球除颜色外都相同,任意摸出一个球是白色的10、一只不透明袋子中装有1个绿球和若干个黑球,这些球除颜色外都相同,某课外学习小组做摸球试验,将口袋中的球拌匀,从中随机摸出个球,记下颜色后再放回口袋中不断重复这一过程,获得数据如下:摸球的次数200300400100016002000摸到黑球的频数14218626066810641333摸到黑球的频率0.71000.62000.65000.66800.66500.6665该学习小组发现,摸到黑球的频率在一
5、个常数附近摆动,由此估计这个口袋中黑球有()个A4B3C2D1第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、从分别写有数字、0、1、2、3、4的九张一样的卡片中,任意抽取一张卡片,则所抽卡片上数字的绝对值小于2的概率是_2、佳禾同学2021年10月的某一天去电影院看电影长津湖,“买了一张电影票座位号是偶数”属于 _(填“必然事件”、“随机事件”或“不可能事件”)3、某班共有36名同学,其中男生16人,喜欢数学的同学有12人,喜欢体育的同学有24人从该班同学的学号中随意抽取1名同学,设这名同学是女生的可能性为a,这名同学喜欢数学的可能性为b,这名同学喜欢体育的可能性为c
6、,则a,b,c的大小关系是_4、在发展现代化农业的形势下,现有A、B两种新玉米种子,为了了解它们的出芽情况,在推广前做了五次出芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:种子数量10030050010003000A出芽率0.990.940.960.980.97B出芽率0.990.950.940.970.96下面有三个推断:当实验种子数量为100时,两种种子的出芽率均为0.99,所以A、B两种新玉米种子出芽的概率一样;随着实验种子数量的增加,A种子出芽率在 0.97附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.97;在同样的地质环境下播种,A种子
7、的出芽率可能会高于B种子其中合理的是_5、从3,0,这五个数中,随机抽取一个数作为m的值,则使函数的图象经过一、三象限,且使关于x的方程有实数根的概率是_三、解答题(5小题,每小题10分,共计50分)1、在33的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上(1)如果只能沿着图中实线向右或向下走,则从点A走到点E有 条不同的路线(2)先从A、B、C中任意取一点,再从D、E、F中任选两个点,用这三个点组成三角形,用树状图或列表的方法求所画三角形是直角三角形的概率2、在一个不透明的袋中装有5个只有颜色不同的球,其中3个黄球,2个黑球(1)用画树状图或列表的方法求从袋中同时摸出
8、的两个球都是黄球的概率;(2)再往袋中放入若干个黑球,搅匀后,若从袋中摸出一个球是黑球的概率是,求放入袋中的黑球的个数3、4张相同的卡片上分别写有数字0、1、3,将卡片的背面朝上,洗后从中任意抽取1张,将卡片上的数字记录下来;再从余下的3张卡片中任意抽取1张,同样将卡片上的数字记录下来(1)第一次抽取的卡片上数字是非负数的概率为_;(2)小敏设计了如下游戏规则:当第一次记录下来的数字减去第二次记录下来的数字所得结果为非负数时,甲获胜;否则,乙获胜小敏设计的游戏规则公平吗?为什么?(请用树状图或列表等方法说明理由)4、根据公安部交管局下发的通知,春节前开展一次“一带一盔”安全守护行动,其中要求骑
9、行摩托车、电动车需要佩戴头盔,某日交警部门在某个十字路口共拦截了50名不带头盔的骑行者,根据年龄段和性别得到如下表的统计信息,根据表中信息回答下列问题:年龄x(岁)人数男性占比x20450%20x30m60%30x402560%40x50875%x503100%(1)统计表中m的值为 ;(2)若要按照表格中各年龄段的人数来绘制扇形统计图,则年龄在“30x40”部分所对应扇形的圆心角的度数为 ;(3)若从年龄在“x20”的4人中随机抽取2人参加交通安全知识学习,请用列表或画树状图的方法,求恰好抽到1名男性和1名女性的概率5、林肇路某路口南北方向红绿灯的设置时间为:红灯57s,绿灯60s,黄灯3s
10、,小明的爸爸由北往南开车随机地行驶到该路口(1)他遇到红灯、绿灯、黄灯的概率各是多少?(2)我国新的交通法规定:汽车行驶到路口时,绿灯亮时才能通过,如果遇到黄灯亮或红灯亮时必须在路口外停车等候,问小明的爸爸开车随机到该路口,按照交通信号灯直行停车等候的概率是多少?-参考答案-一、单选题1、C【分析】先判断出矩形、菱形、等边三角形、圆的中心对称图形,在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心,再根据概率公式解答即可【详解】解:在矩形、菱形、等边三角形、圆中,中心对称图形有矩形、菱形和圆,共3个;则P(中心对称
11、图形);故选:C【点睛】本题考查中心对称图形的识别,列举法求概率,掌握中心对称图形的识别,列举法求概率是解题关键2、D【分析】根据概率公式求解即可【详解】书架上放着两本散文和一本数学书,小明从中随机抽取一本,故选:D【点睛】本题考查随机事件的概率,某事件发生的概率等于某事件发生的结果数与总结果数之比,掌握概率公式的运用是解题的关键3、A【分析】根据“大量重复试验中事件发生的频率逐渐稳定到的常数可以估计概率”直接写出答案即可【详解】解:设有红色球x个,根据题意得:,解得:x=12,经检验,x=12是分式方程的解且符合题意故选:【点睛】本题考查了利用频率估计概率的知识,解题的关键是能够根据摸到红球
12、的频率求得红球的个数4、B【分析】根据概率的求法、随机事件、比例中项的概念、位似图形的概念判断即可【详解】解:A、同时投掷两枚相同的硬币,出现“一正一反”的概率是,本选项说法错误,不符合题意;B、事件“两个正数相加,和是正数”是必然事件,本选项说法正确,符合题意;C、数2和8的比例中项是4,本选项说法错误,不符合题意;D、同一张底片洗出来的两张照片是全等图形,不一定是位似图形,本选项说法错误,不符合题意;故选:B【点睛】本题考查的是概率、随机事件、比例中项、位似图形,掌握它们的概念和性质是解题的关键5、D【分析】根据概率的意义去判断即可【详解】“明天降雨的概率是80%”表示明天有降雨的可能性是
13、80%,A说法错误;抛一枚硬币正面朝上的概率为”表示正面向上的可能性是,B说法错误;“彩票中奖的概率是1%”表示中奖的可能性是1%,C说法错误;“抛一枚均匀的正方体骰子,朝上的点数是2的概率为”表示随着抛掷次数的增加,“拋出朝上的点数是2”这一事件发生的概率稳定在附近,D说法正确;故选D【点睛】本题考查了概率的意义,正确理解概率的意义是解题的关键6、B【分析】列表展示所有4种等可能的情况数,找出符合条件的情况数,然后根据概率公式求解即可【详解】解:列表如下:12123234由表知,共有4种等可能结果,其中两次摸出的小球的标号之和是3的有2种结果,所以两次摸出的小球的标号之和是3的概率为,故选:
14、B【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率7、D【分析】必然事件是在一定条件下,一定会发生的事件;根据定义对选项进行判断,得出结果【详解】解:A、B、C选项中的事件都是随机事件,不符合要求;D选项中13人中至少有2人的出生月份相同是必然事件,符合要求;故选D【点睛】本题考查了必然事件解题的关键在于正确理解必然事件与随机事件的定义8、A【分析】根据概率公式计算即可【详解】解:袋中装有3个红球和5个绿球共8个球,从袋中随机摸出1个球是红球的概率为,故选:A【点睛】此题考查了概率的
15、计算公式,正确掌握计算公式是解题的关键9、B【分析】必然事件就是一定发生的事件,依据定义即可作出判断【详解】解:A、是随机事件,故此选项不符合题意;B、是必然事件,故此选项符合题意;C、是随机事件,故此选项不符合题意;D、是随机事件,故此选项不符合题意;故选:B【点睛】解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件10、C【分析】该学习小组发现,摸到黑球的频率在一个常数附近摆动,这个常数约为0.667,据此知摸出黑球的概率为0.667,继而得
16、摸出绿球的概率为0.333,求出袋子中球的总个数即可得出答案【详解】解:该学习小组发现,摸到黑球的频率在一个常数附近摆动,这个常数约为0.667,估计摸出黑球的概率为0.667,则摸出绿球的概率为,袋子中球的总个数为,由此估出黑球个数为,故选:C【点睛】本题考查了利用频率估计概率,解题的关键是掌握大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率二、填空题1、【分析】让绝对值小于2的数的个数除以数的总数即为所抽卡片上数字的绝对值小于2的概率【详解】解:数的总个数有9个,绝对值小
17、于2的数有1,0,1共3个,任意抽取一张卡片,则所抽卡片上数字的绝对值小于2的概率是,故答案为:【点睛】本题考查概率的求法;得到绝对值小于2的数的个数是解决本题的易错点2、随机事件【分析】根据确定事件和随机事件的定义来区分判断即可,必然事件和不可能事件统称确定性事件;必然事件:在一定条件下,一定会发生的事件称为必然事件;不可能事件:在一定条件下,一定不会发生的事件称为不可能事件;随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件【详解】“买了一张电影票座位号是偶数”属于随机事件故答案为:随机事件【点睛】本题考查了随机事件的定义,熟悉定义是解题的关键3、cab【分析】根据概率公式分别
18、求出各事件的概率,故可求解【详解】依题意可得从该班同学的学号中随意抽取1名同学,设这名同学是女生的可能性为,这名同学喜欢数学的可能性为,这名同学喜欢体育的可能性为,a,b,c的大小关系是cab故答案为:cab【点睛】本题考查概率公式的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比4、【分析】大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率,据此解答可得【详解】在大量重复试验时,随着试验次数的增加,可以用一个事件出现的概率估计它的概率,实验种子数量为100,数量太少
19、,不可用于估计概率,故推断不合理;随着实验种子数量的增加,A种子出芽率在0.97附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.97,故推断合理;在同样的地质环境下播种,A 种子的出芽率约为0.97,B种子的出芽率约为0.96,种子的出芽率可能会高于种子,故正确,故答案为:【点睛】此题考查利用频率估计概率,理解随机事件发生的频率与概率之间的关系是解题的关键5、【分析】由正比例函数的图象及其性质可判断3,0,五个数均符合,由一元二次方程根的判别式可判断出只有,三个数符合题意,故概率为【详解】的图象经过一、三象限即3,0,这五个数均符合关于x的方程其中则令解得时关于x的方程有实数根故,
20、三个数符合题意则P=故答案为:【点睛】本题考查了正比例函数图象及其性质和一元二次方程根的判别式当时正比例函数图象过第一、三象限,时正比例函数图象过第二、四象限;使用一元二次方程根的判别式,应先将方程整理成一般形式,再确定a,b,c的值注意利用判别式可以判断方程的根的情况,反之,当方程有两个不相等的实数根时,;有两个相等的实数根时,;没有实数根时,当时,方程有两个相等的实数根,不能说方程只有一个根三、解答题1、(1)6;(2)【分析】(1)根据题意只能沿着图中实线向右或向下走,枚举所有可能即可求解;(2)根据网格的特点判断直角三角形,根据列表法求得概率【详解】(1)如图,从点出发,只能向右或向下
21、,先向右的路线为:,,先向下的路线为:,共6条路线故答案为:6(2)列表如下,ABCD、EADEBDECDED、FADFBDFCDFE、FAEFBEFCEF根据列表可知共有9种等可能情况,只有CDE,CDF, CEF是直角三角形则所画三角形是直角三角形的概率为【点睛】本题考查了枚举法,列表法求概率,掌握列举法和列表法求概率是解题的关键2、(1);(2)4【分析】(1)根据题意画出树状图求出所有等可能的结果数和同时摸出的两个球都是黄球的结果数,然后根据概率公式求解即可;(2)设放入袋中的黑球的个数为x,根据从袋中摸出一个球是黑球的概率是,列方程求解即可【详解】解:(1)画树状图为:共有20种等可
22、能的结果数,其中从袋中同时摸出的两个球都是黄球的结果数为6,所以从袋中同时摸出的两个球都是黄球的概率;(2)设放入袋中的黑球的个数为x,根据题意得解得x4,所以放入袋中的黑球的个数为4【点睛】本题考查的是用列表法或画树状图法求概率解题的关键是熟练掌握列表法或画树状图法列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件用到的知识点为:概率=所求情况数与总情况数之比3、(1)(2)此游戏公平,理由见解析.【分析】(1)利用概率公式求解即可;(2)利用列表法列举出所有可能,进而利用概率公式进而得出甲、乙获胜的概率即可得出答案(1)
23、解:第一次抽取的卡片上数字是非负数的概率为,故答案为:(2)解:列表如下:01-2301-231-1-32-22353-3-2-5由表可知,共有12种等可能结果,其中结果为非负数的有6种结果,结果为负数的有6种结果,所以甲获胜的概率乙获胜的概率,此游戏公平【点睛】本题考查的是游戏公平性的判断判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平用到的知识点为:概率所求情况数与总情况数之比4、(1)10(2)180(3)见解析,【分析】(1)根据总数减去表格中其他数据即可求解;(2)根据年龄在“30x40”的人数占总人数的比例乘以360即可求解;(3)用列表法求概率即可(1)故
24、答案为:10(2)故答案为:(3)设两名男性用表示,两名女性用表示,根据题意,列表如下,由上表可知,共有12种等可能的结果,符合条件的结果有8种,故P(恰好抽到1名男性和1名女性)=【点睛】本题考查了求扇形统计图的圆心角的度数,求频数,根据列表法求概率,理解题意,掌握以上知识是解题的关键5、(1)他遇到红灯、绿灯、黄灯的概率各是、;(2)【分析】(1)根据红灯、绿灯、黄灯的时间求出总时间,再利用概率公式即可得;(2)将遇到红灯和黄灯的概率相加即可得【详解】解:(1)红灯、绿灯、黄灯的总时间为,则他遇到红灯的概率是,遇到绿灯的概率是,遇到黄灯的概率是,答:他遇到红灯、绿灯、黄灯的概率各是、;(2),答:按照交通信号灯直行停车等候的概率是【点睛】本题考查了简单事件的概率,熟练掌握概率公式是解题关键