《2022年最新京改版九年级数学下册第二十六章-综合运用数学知识解决实际问题专题攻克试题(含详解).docx》由会员分享,可在线阅读,更多相关《2022年最新京改版九年级数学下册第二十六章-综合运用数学知识解决实际问题专题攻克试题(含详解).docx(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第二十六章 综合运用数学知识解决实际问题专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、有n个人报名参加甲、乙、丙、丁四项体育比赛活动,规定每人至少参加1项比赛,至多参加2项比赛,但乙、丙两项比赛
2、不能同时兼报,若在所有的报名方式中,必存在一种方式至少有10个人报名,则n的最小值等于( )A91B90C82D812、,则( )AB0C32D643、几何中研究物体时不研究它的( )A形状B大小C位置关系D颜色4、如图一是一个解环游戏,一条链子由14个铁圈连在一起,要使这14个铁圈环环都脱离,例如图二只需要解开一个圈即可环环都脱离要解开图一的链子至少要解开几个圈呢?()A5个B6个C7个D8个5、根据居民家庭亲子阅读消费调查报告中的相关数据制成扇形统计图,由图可知,下列说法错误的是( )A扇形统计图能反映各部分在总体中所占的百分比B每天阅读30分钟以上的居民家庭孩子超过50%C每天阅读1小时
3、以上的居民家庭孩子占20%D每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是1086、下列方法中,不能用于检验平面与平面是否垂直的是( )A长方形纸片B三角尺C合页型折纸D铅垂线7、方程的不同有理根的个数是( )A0B1C2D48、由邯郸到北京的某一次列车,运行途中停靠的车站依次是:邯郸邢台石家庄保定北京,那么要为这次列车制作的火车票有( )A9种B20种C10种D72种9、生活垃圾分类回收是实现垃圾减量化和资源化的重要途径和手段为了解2019年某市第二季度日均可回收物回收量情况,随机抽取该市2019年第二季度的天数据,整理后绘制成统计表进行分析日均可回收物回收量(千吨)合计频数123
4、频率0.050.100.151表中组的频率满足下面有四个推断:表中的值为20;表中的值可以为7;这天的日均可回收物回收量的中位数在组;这天的日均可回收物回收量的平均数不低于3所有合理推断的序号是( )ABCD10、小菁同学在数学实践活动课中测量路灯的高度如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35,再往前走3米站在C处,看路灯顶端O的仰角为65,则路灯顶端O到地面的距离约为(已知sin350.6,cos350.8,tan350.7,sin650.9,cos650.4,tan652.1)()A3.2米B3.9米C4.7米D5.4米第卷(非选择题 70分)二、填空题(5小
5、题,每小题4分,共计20分)1、如图,正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的体积为_cm3(结果保留)2、定义一种新运算“”规则如下:对于两个有理数,若,则_3、(问题提出):将一个边长为n(n2)的菱形的四条边n等分,连接各边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形个数分别是多少?(问题探究):要研究上面的问题,我们不妨先从特例入手,进而找到一般规律探究一:将一个边长为2的菱形的四条边分别2等分,连接各边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形个数分别是多少?如图1,从上往下,共有2行,我们先研究平行四边形的个数:
6、(1)第一行有斜边长为1,底长为12的平行四边形,共有213个;(2)第二行有斜边长为1,底长为12的平行四边形,共有213个;为了便于归纳分析,我们把平行四边形下面的底在第二行的所有平行四边形均算作第二行的平行四边形,以下各行类同第二行因此底第二行还包括斜边长为2,底长为12的平行四边形,共有213个即:第二行平行四边形共有23个所以如图1,平行四边形共有2339(21)2我们再研究菱形的个数:分析:边长为1的菱形共有22个,边长为2的菱形共有12个,所以:如图1,菱形共有22125235个探究二:将一个边长为3的菱形的四条边分别3等分,连接各边对应的等分点,则该菱形被剖分的网格中的平行四边
7、形的个数和菱形个数分别是多少?如图2,从上往下,共有3行,我们先研究平行四边形的个数:(1)第一行有斜边长为1,底长为13的平行四边形,共有3216个;(2)第二行有斜边长为1,底长为12的平行四边形,共有3216个;底在第二行还包括斜边长为2,底长为13的平行四边形,共有3216个,即:第二行平行四边形共有26个(3)第三行有斜边长为1,底长为13的平行四边形,共有3216个;底在第三行还包括斜边长为2,底长为13的平行四边形,共有3216个底在第三行还包括斜边长为3,底长为13的平行四边形,共有3216个,即:第三行平行四边形共有36个所以如图2,平行四边形共有36266(321)6(32
8、1)2我们再研究菱形的个数:分析:边长为1的菱形共有32个,边长为2的菱形共有22个,边长为3的菱形共有12个所以:如图2,菱形共有32221214347个探究三:将一个边长为4的菱形的四条边分别4等分,连接各边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形个数分别是多少?如图3,从上往下,共有4行,我们先研究平行四边形的个数:(1)第一行有斜边长为1,底长为14的平行四边形,共有432110个;(2)第二行有斜边长为1,底长为14的平行四边形,共有432110个;底在第二行还包括斜边长为2,底长为14的平行四边形,共有432110个,即:第二行平行四边形共有210个(3)模仿上
9、面的探究,第三行平行四边形总共有 个(4)按照上边的规律,第四行平行四边形总共有 个所以,如图3,平行四边形总共有 个我们再研究菱形的个数:分析:边长为1的菱形共有42个,边长为2的菱形共有32个,边长为3的菱形共有22个,边长为4的菱形共有12个所以:如图3,菱形共有42322212 个,(仿照前面的探究,写成三个整数相乘的形式)(问题解决)将一个边长为n(n2)的菱形的四条边n等分,连接各边对应的等分点,根据上边的规律,得出该菱形被剖分的网格中的平行四边形的个数是 和菱形个数分别是 (用含n的代数式表示)(问题应用)将一个边长为n(n2)的菱形的四条边n等分,连接各边对应的等分点,若得出该
10、菱形被剖分的网格中的平行四边形的个数是441个,则n (拓展延伸)将一个边长为n(n2)的菱形的四条边n等分,连接各边对应的等分点,当该菱形被剖分的网格中的平行四边形的个数与菱形个数之比是13519时,则n 4、若不等式:对任意的成立,则实数x的取值范围_5、若一个梯形的中位线长为15,一条对角线把中位线分成两条线段这两条线段的比是,则梯形的上、下底长分别_三、解答题(5小题,每小题10分,共计50分)1、函数,若自变量x取值范围内存在,使成立,则称以为坐标的点为函数图像上的不动点(如函数也可记为,当时的函数值可记为(1)若函数有两个关于原点对称的不动点,求应满足的条件;(2)在(1)的条件下
11、,若,直线与y轴、x轴分别相交于两点,在的图象上取一点P(P点的横坐标大于2),过P作轴,垂足是Q,若四边形的面积等于2,求P点的坐标(3)定义在实数集上的函数,对任意的x有恒成立下述命题“若函数的图像上存在有限个不动点,则不动点有奇数个”是否正确?若正确,给予证明;若不正确,举反例说明2、问题提出:(1)如图1,已知ABC,试确定一点D,使得以A,B,C,D为顶点的四边形为平行四边形,请画出这个平行四边形;问题探究:(2)如图2,在矩形ABCD中,AB=4,BC=10,若要在该矩形中作出一个面积最大的BPC,且使BPC90,求满足条件的点P到点A的距离;问题解决:(3)如图3,有一座草根塔A
12、,按规定,要以塔A为对称中心,建一个面积尽可能大的形状为平行四边形的草根景区BCDE根据实际情况,要求顶点B是定点,点B到塔A的距离为50米,CBE=120,那么,是否可以建一个满足要求的面积最大的平行四边形景区BCDE?若可以,求出满足要求的平行四边形BCDE的最大面积;若不可以,请说明理由(塔A的占地面积忽略不计)3、如图,牧童在A处放牛,其家在B处,A、B到河岸l的距离分别为AC=1km,BD=3km,且CD=3km(1)牧童从A处将牛牵到河边饮水后再回家,试问在何处饮水,所走路程最短请在图中画出饮水的位置(保留作图痕迹),并说明理由(2)求出(1)中的最短路程4、某风景区内的公路如图1
13、所示,景区内有免费的班车,从入口处出发,沿该公路开往草甸,途中停靠塔林(上下车时间忽略不计).第一班车上午8点发车,以后每隔10分钟有一班车从入口处发车.小聪周末到该风景区游玩,上午7:40到达入口处,因还没到班车发车时间,于是从景区入口处出发,沿该公路步行25分钟后到达塔林离入口处的路程(米)与时间(分)的函数关系如图2所示. (1)求第一班车离入口处的路程(米)与时间(分)的函数表达式.(2)求第一班车从人口处到达塔林所需的时间.(3)小聪在塔林游玩40分钟后,想坐班车到草甸,则小聪最早能够坐上第几班车?如果他坐这班车到草甸,比他在塔林游玩结束后立即步行到草甸提早了几分钟?(假设每一班车速
14、度均相同,小聪步行速度不变)5、猜谜语(各打数学中常用字):千人分在北上下;1人立在口上边-参考答案-一、单选题1、C【分析】先计算出一个人报名的选择有9种,然后根据必存在一种方式至少有10个人报名,可以让每一种方式都有9个人,然后只要任意一种再加一个人,继而可得出n的值【详解】解:对于一个人来说,他的报名方式有两种:报一项或两项,报一项比赛的方式有4种,报两项比赛的方式有5种,故可得:每个人报名方式有9种,又题目要求有10人相同,故可以让每一种方式都有9个人,然后只要任意一种再加一个人即可,所以nmin=99+1=82故选:C【点睛】此题考查了计数方法的问题,根据题意得出每人的报名方式有9种
15、是解答本题的关键,要注意仔细理解题意,难度较大2、C【分析】将x=1代入可知a12+a11+a10+a1x+a0的值,将x=-1代入可求得a12-a11+a10-a9+-a1x+a0的值,然后将两式相加可求得a12+a10+a8+a6+a4+a2+a0的值,最后将x=0代入可求得a0的值【详解】解:将x=1代入得:a12+a11+a10+a1x+a0=64,将x=-1代入得:a12-a11+a10-a9+-a1x+a0=0,+得:2(a12+a10+a8+a6+a4+a2+a0)=64a12+a10+a8+a6+a4+a2+a0=32将x=0代入得:a0=64a12+a10+a8+a6+a4+
16、a2=32-64=-32故选:C【点睛】本题主要考查的是求代数式的值,特殊值法的应用是解题的关键3、D【分析】根据数学学科常识即可解答,几何中我们不研究物体的颜色、质量和材质等【详解】几何中研究物体的形状、大小和位置关系,不研究它的颜色、质量和材质等故选D【分析】本题主要考查几何基本知识,理解几何研究的内容是解题关键4、C【解析】【分析】通过观察图形,找到铁圈的方法:解开1、3、5、13个环即可.【详解】只要解开1、3、5、13个环即可环环都脱离,7所以只要解开7个环即可环环都脱离故选:C【点睛】本题考查了找规律,解题的关键是能够看出解开奇数个环即可环环脱离.5、C【分析】根据扇形统计图中的百
17、分比的意义逐一判断即可得【详解】解:A扇形统计图能反映各部分在总体中所占的百分比,此选项正确;B每天阅读30分钟以上的居民家庭孩子的百分比为,超过,此选项正确;C.每天阅读1小时以上的居民家庭孩子占,此选项错误;D.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是,此选项正确;故选C【点睛】本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数6、A【分析】A. 长方形纸片的长和宽互相垂直,不能判定平面与平面是否垂直;B. 根据三角尺两直角边成直角性质解题即可;C. 根据合页型折纸其折痕与纸被折断的一边垂直解题;D. 铅垂线垂直于水平面,据
18、此解题【详解】A. 长方形纸片的长和宽互相垂直,不能判定平面与平面是否垂直,故A符合题意;B. 将两块三角形的直角边重合,另外两条直角边相交,放在水平面上,可判断重合的直角边垂直于水平面,故B不符合题意;C. 合页型折纸其折痕与纸被折断的一边垂直,即折痕与被折断的两线段垂直,把它们放到水平面上,可判断折痕与水平面垂直,故C不符合题意;D. 根据重力学原理,铅垂线垂直于水平面,可检验平面与平面垂直, 故D不符合题意故选:A【点睛】本题考查垂线的性质,是常见基础考点,掌握相关知识、联系生活实际是解题关键7、C【分析】首先观察x=1是方程的一个根故可以把方程x4-6x3+13x2-12x+4=0化成
19、(x-1)(x3-5x2+8x-4)=0,再次发现x=1是方程x3-5x2+8x-4=0的一个有理根,于是原方程可以化为(x-1)2(x2-4x+4)=0,即可求出不同有理数的个数【详解】解:观察可知x=1是方程x4-6x3+13x2-12x+4=0的一个根,即(x-1)(x3-5x2+8x-4)=0,观察可知x=1还是x3-5x2+8x-4=0,原方程可以化为(x-1)2(x2-4x+4)=0,解得x=1或2,原方程的不同有理根有2个,故选C【点睛】本题主要考查高次方程的知识点,解答本题的关键是把方程x4-6x3+13x2-12x+4=0进行因式分解,此题难度不大8、A【详解】共需制作的车票
20、数为:4+3+2+1,=210,=10(种)故选A9、D【分析】根据数据总和=频数频率,列式计算即可得出m的值;根据的频率a满足,可求出该范围的频数,进一步得出b的值的范围,从而求解;根据中位数的定义即可求解;根据加权平均数的计算公式即可求解.【详解】解:日均可回收物回收量(千吨)为时,频数为1,频率为0.05,所以总数m=,推断合理;200.2=4,200.3=6,1+2+6+3=12,故表中b的值可以为7,是不合理的推断;1+2+6=9,故这m天的日均可回收物回收量的中位数在组,是合理推断;(1+5)2=3,0.05+0.10=0.15,这天的日均可回收物回收量的平均数不低于3,是合理推断
21、.故选:D【点睛】本题考查频数(率)分布表,从表中获取数量及数量之间的关系是解题问题的关键.10、C【分析】过点O作OEAC于点F,延长BD交OE于点F,设DFx,根据锐角三角函数的定义表示OF的长度,然后列出方程求出x的值即可求出答案【详解】解:过点O作OEAC于点F,延长BD交OE于点F,设DFx,tan65,OFxtan65,BF3+x,tan35,OF(3+x)tan35,2.1x0.7(3+x),x1.5,OF1.52.13.15,OE3.15+1.54.65,故选:C【点睛】本题考查了锐角三角函数解直角三角形的应用,根据题意构建直角三角形是解本题的关键二、填空题1、27【详解】正方
22、形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体为底面半径为3,高为3的圆柱体,该圆柱体的体积为:323=27故答案为:272、【分析】根据给定新运算的运算法则可以得到关于x的方程,解方程即可得到解答【详解】解:由题意得:(5x-x)(2)=1,-2(5x-x)-(-2)=-1,-8x+2=-1,解之得:,故答案为【点睛】本题考查新定义下的实数运算,通过阅读题目材料找出有关定义和运算法则并应用于新问题的解决是解题关键 3、探究三:(3)3(4321);(4)4(4321),(4321)2,459个;【问题解决】(nn1n21)2,n(n1)(2n1);【问题应用】6;【拓
23、展延伸】9【分析】探究三:通过第一行,第二行,可推出第三行的规律为 3(4321)个,进而推出第四行的规律为 4(4321)个,再通过边长为4求出总个数即可;问题解决:根据边长为4的规律,归纳边长为n的情形得到平行四边形的总个数(nn1n21)2,菱形的个数为n(n1)(2n1)即可;问题应用:根据平行四边形个数构造方程,解方程即可;拓展延伸:根据规律利用平行四边形的个数与菱形个数的比构造方程,化简整理,解方程即可得到其他答案【详解】解:探究三:(3)通过第一行,第二行,可推出第三行平行四边形总共有 3(4321)个故答案为:3(4321);(4)按照以上规律,第四行平行四边形共有 4(432
24、1)个,所以,如图 3,平行四边形共有 4(4321)3(4321)2(4321)1(4321)(4321)(4321)(4321)2个我们再研究菱形的个数:分析:边长为1的菱形共有42个,边长为2的菱形共有32个,边长为3的菱形共有22个,边长为4的菱形共有12个所以:如图3,菱形共有42322212(459)个,(仿照前面的探究,写成三个整数相乘的形式)故答案为:4(4321),(4321)2,459;问题解决:将一个边长为n(n2)的菱形的四条边n等分,连接各边对应的等分点,根据上边的规律,得出该菱形被剖分的网格中的平行四边形的个数是(nn1n21)2和菱形个数分别是n(n1)(2n1)
25、个(用含n的代数式表示)故答案为:(nn1n21)2,n(n1)(2n1);问题应用:根据题意可得,(nn1n21)2441,nn1n2121,n6故答案为:6;拓展延伸:Sn(n1)(n2)1, S123n,得 2Sn(n1),S,根据题意可得,整理得:,解得:n9,或者n(舍去),故n的值为9故答案为:9【点睛】本题考查是找规律的试题,通过探究,问题解决,应用,拓展使问题逐步加深,培养学生分析问题,研究问题,解决问题,应用拓展能力,仔细观察图形,通过不完全归纳法,得出规律,利用规律构造方程,解一元二次方程是解题关键4、【分析】根据题意设关于a的函数为,从而可得当a=0时,y0,且a=1 时
26、y0时,解出x的取值范围即可.【详解】解:由题意可得:对任意的成立,设,a=0时,y0,且a=11时, y0,即,解得:.则实数x的取值范围是:.【点睛】本题考查了不等式恒成立问题的解法,注意构造函数,运用函数增减性解决问题.5、12,18【分析】首先根据梯形的中位线定理,得到梯形的上、下底的和;再根据三角形的中位线定理得到梯形的上、下底的比,最后分别求得梯形的上、下底的长【详解】解:梯形的中位线长为15,梯形的上底与下底的和为30又一条对角线把中位线分成两条线段比是3:2,根据三角形的中位线定理,得下底:上底=3:2梯形的上、下底分别是12,18故答案为:12,18【点睛】本题综合运用了梯形
27、的中位线定理和三角形的中位线定理解答的关键是熟练掌握中位线这个知识点,三角形中位线平行于底边且等于底边的一半;梯形中位线平行于上下两底,且等于两底和的一半三、解答题1、(1)且9;b=3;(2);(3)正确;证明见解析【分析】(1)根据不动点的定义,得出方程有两个不等的实根,且互为相反数,转化为二次方程,利用根与系数的关系,即可求解;(2)由(1)和a=2,求得,设上任意一点,根据S四边形AOQP-,列出方程,即可求解;(3)定义在R上的奇函数必有0,再设为函数图像上的不动点,结合奇函数的定义得出也为函数图像上的不动点,即可求解【详解】解:(1)由题意,函数有两个关于原点对称的不动点,可得有两
28、个互为相反数的根,即有两个互为相反数的根,带入得,两式相减得,所以b=3,方程变为,所以a0且a9;(2)由(1)得a=2,b=3,所以l:y=-x+2,即A(0,2),B(2,0),设上任意一点(t2),所以Q(t,0)(t2),又因为,所以,解得,所以P点的坐标;(3)正确在,令x=0,可得,所以,所以(0,0)为函数的不动点,设为函数图像上的不动点,则,所以,所以也为函数图像上的不动点【点睛】本题主要考查了函数的新定义的应用,以及函数与方程的综合应用,其中解答中正确理解函数的新定义,以及合理应用函数的奇偶性求解是解答的关键,着重考查推理与运算能力2、(1)点D所在的位置见解析;(2)AP
29、的长为2或8;(3)可以,符合要求的BCDE的最大面积为.【分析】(1)根据平行四边形的特点,分三种情况利用平移的性质得到点D的位置即可;(2)由题意可知点P在边AD上时,BPC的面积最大,为满足BPC90,根据AB比BC的一半小,以BC为直径画圆,圆与AD的交点即可满足条件的点P,然后根据已知条件利用勾股定理进行求解即可;(3)可以,如图所示,连接BD,由已知可得BD=100,BED=60,作BDE的外接圆O,则点E在优弧上,取的中点,连接,则可得为正三角形,连接并延长,经过点A至,使,连接,可得四边形为菱形,且,作EFBD,垂足为F,连接EO,则,则有,据此即可求得答案.【详解】(1)如图
30、所示,有三个符合条件的平行四边形;(2)如图,AB=4,BC=10,取BC的中点O,则OBAB,以点O为圆心,OB长为半径作O,O一定于AD相交于两点,连接,BPC=90,点P不能在矩形外;BPC的顶点P在或位置时,BPC的面积最大,作BC,垂足为E,则OE=3,由对称性得,综上可知AP的长为2或8;(3)可以,如图所示,连接BD,A为平行四边形BCDE的对称中心,BA=50,CBE=120,BD=100,BED=60,作BDE的外接圆O,则点E在优弧上,取的中点,连接,则,且=60,为正三角形,连接并延长,经过点A至,使,连接,BD,四边形为菱形,且,作EFBD,垂足为F,连接EO,则,所以
31、符合要求的BCDE的最大面积为.【点睛】本题考查了直径所对的圆周角是直角,圆周角定理,等边三角形的判定与性质,菱形的判定与性质等,综合性较强,难度较大,正确画出符合题意的图形是解题的关键.3、(1)见解析;(2)【分析】(1)作点关于直线的对称点,连接交于点,点即为所求;(2)过作的延长线于F,根据勾股定理求解即可【详解】解:(1)作点关于直线的对称点,连接交于点,点即为所求,如下图,理由:由题意可得,垂直平分,根据两点之间,线段最短,可得共线时最短;(2)由作图可得最短路程为的距离,过作的延长线于F,则,根据勾股定理可得,【点睛】本题考查了线路最短的问题,涉及了轴对称变换的性质和勾股定理,确
32、定动点为何位置并综合运用勾股定理的知识是解题的关键4、(1).;(2)10分钟;(3)第5班车,7分钟.【分析】(1)设y=kx+b,运用待定系数法求解即可;(2)把y=1500代入(1)的结论即可;(3)设小聪坐上了第n班车,30-25+10(n-1)40,解得n4.5,可得小聪坐上了第5班车,再根据“路程、速度与时间的关系”解答即可【详解】(1)解:由题意得,可设函数表达式为:.把,代入,得,解得.第一班车离入口处的路程(米)与时间(分)的函数表达式为. (2)解:把代入,解得,(分)第一班车到塔林所需时间10分钟.(3)解:设小聪坐上第班车. ,解得,小聪最早坐上第5班车.等班车时间为5分钟,坐班车所需时间:(分),步行所需时间:(分),(分)小聪坐班车去草甸比他游玩结束后立即步行到达草甸提早7分钟【点睛】本题主要考查了一次函数的应用,熟练掌握待定系数法求出函数解析式是解答本题的关键5、乘;合【分析】(1)“千人分在北上下”,“北”的上面一个“千”,下面一个“人”,是“乘”,正是数学中常用字;(2)一人在“口”上边是“合”,合数的“合”是数学中常用字;即可得解【详解】解:(1)千人分在北上下打数学中常用字是“乘”;(2)1人立在口上边打数学中常用字是“合”【点睛】本题考查了数学常识,对数学概念的理解和灵活运用是解题的关键