2021-2022学年人教版九年级数学下册第二十七章-相似必考点解析试题(含答案解析).docx

上传人:可****阿 文档编号:30724666 上传时间:2022-08-06 格式:DOCX 页数:38 大小:869.97KB
返回 下载 相关 举报
2021-2022学年人教版九年级数学下册第二十七章-相似必考点解析试题(含答案解析).docx_第1页
第1页 / 共38页
2021-2022学年人教版九年级数学下册第二十七章-相似必考点解析试题(含答案解析).docx_第2页
第2页 / 共38页
点击查看更多>>
资源描述

《2021-2022学年人教版九年级数学下册第二十七章-相似必考点解析试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年人教版九年级数学下册第二十七章-相似必考点解析试题(含答案解析).docx(38页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、人教版九年级数学下册第二十七章-相似必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知,那么下列等式中正确的是( )ABCD2、如图,下列选项中不能判定ACDABC的是()AACDBBADCA

2、CBCAC2ADABDBC2BDAB3、一种数学课本的宽与长之比为黄金比,已知它的长是26cm,那么它的宽是()cmA26+26B2626C13+13D13134、在平面直角坐标系中,已知点A(1,0),B(2,1),C(1,2),以原点O为位似中心,位似比为2,把四边形OABC放大,则点C对应点C的坐标为()A(,1)B(2,4)C(,1)或(,1)D(2,4)或(2,4)5、如图的两个四边形相似,则a的度数是( )A120B87C75D606、如图,已知四边形ABCD是矩形,点E在BA的延长线上,EC分别交AD,BD于点F,G,若,则的值为( )ABC2D7、如图,已知矩形ABCD中,AB

3、3,BE2,EFBC若四边形EFDC与四边形BEFA相似而不全等,则CE的值为( )AB6CD98、如图,矩形的对角线、相交于点E,轴于点B,所在直线交x轴于点F,点A、E同时在反比例函数的图象上,已知直线的解析式为,矩形的面积为120,则k的值是( )ABCD9、下列命题中, 说法正确的是( )A所有菱形都相似B两边对应成比例且有一组角对应相等的两个三角形相似C三角形的重心到一个顶点的距离, 等于它到这个顶点对边距离的两倍D斜边和直角边对应成比例, 两个直角三角形相似10、如图,RtABC中,ACB90,分别以AB,BC,AC为边在ABC外部作正方形ADEB,CBFG,ACHI将正方形ABE

4、D沿直线AB翻折,得到正方形ABED,AD与CH交于点N,点E在边FG上,DE与CG交于点M,记ANC的面积为S1,四边形的面积为S2,若CN2NH,S1+S214,则正方形ABED的面积为()A25B26C27D28第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在ABC中,AB5,AC4,点D在边AB上,若ACDB,则AD的长为_2、如图,在RtABC中,C90,ADBD,CE2BE,过点B作BFCD交AE的延长线于点F,当BF1时,AB的长为 _3、如图,四边形和四边形都是平行四边形,点为的中点,分别交和于点,求_4、点 是 的重心, 过点 作 边的平行线与

5、 边交于点 与 边交于点 , 则 _5、如图,中,点为上一点,连接,则的长为_三、解答题(5小题,每小题10分,共计50分)1、如图,在RtABC中,ACB90,CDAB于点D,点E是直线AC上一动点,连接DE,过点D作FDED,交直线BC于点F(1)探究发现:如图1,若mn,点E在线段AC上,则 ;(2)数学思考:如图2,若点E在线段AC上,则 (用含m,n的代数式表示);当点E在直线AC上运动时,中的结论是否仍然成立?请仅就图3的情形给出证明;(3)拓展应用:若AC,BC2,DF4,请直接写出CE的长2、在等边三角形ABC中,点D是边AB的中点,过点D作DEBC交AC于点E,点F在BC边上

6、,连接DF,EF(1)如图1,当DF是BDE的平分线时,若AE2,求EF的长;(2)如图2,当DFDE时,设AEa,则EF的长为 (用含a的式子表示)3、如图,在平面直角坐标系中,是坐标原点(1)画出以点为旋转中心,将OBC顺时针旋转90后的三角形(2)在轴的左侧将放大到原来的两倍(即新图与原图的相似比为2:1),画出新图形O,并写出的坐标4、如图1,四边形ABCD是正方形,连接AC,是等腰直角三角形,DF交AC于点M(1)若DE交BC边于点H,连接BD,求证:(2)连接MH,求证:是等腰直角三角形(3)如图2,若DE交直线AC于点N,DF交BC于点P,交AB的延长线于点G,连接NG,若P是B

7、C的中点,求NG的长5、尝试:如图,中,将绕点A按逆时针方向旋转一定角度得到,点B、C的对应点分别为、,连接、,直接写出图中的一对相似三角形_;拓展:如图,在中,将绕点A按逆时针方向旋转一定角度得到,点B、C的对应点分别为、,连接、,若,求的长;应用:如图,在中,将绕点A按逆时针方向旋转一周,在旋转过程中,当点B的对应点恰好落在的边所在的直线上时,直接写出此时点C的运动路径长-参考答案-一、单选题1、C【解析】【分析】由题意设 则 再逐一代入各选项进行计算与检验即可得到答案.【详解】解: ,设 则 故A不符合题意;故B不符合题意;故C符合题意;则故D不符合题意;故选C【点睛】本题考查的是比例的

8、基本性质,掌握“设参数的方法解决比例问题”是解本题的关键.2、D【解析】【分析】根据相似三角形的判定定理逐项判断即可【详解】解:A.AA,ACDB,ACDABC,故本选项不符合题意;B.AA,ADCACB,ACDABC,故本选项不符合题意;C.AC2ADAB,AA,ACDABC,故本选项不符合题意;D.BC2BDAB,添加AA,不能推出ACDABC,故本选项符合题意故选:D【点睛】本题考查了相似三角形的判定定理,能熟记相似三角形的判定定理的内容是解此题的关键3、D【解析】【分析】根据一种数学课本的宽与长之比为黄金比,即可得到宽:长,由此求解即可【详解】解:一种数学课本的宽与长之比为黄金比,宽:

9、长,长是26cm,宽,故选D【点睛】本题主要考查了黄金比,解题的关键在于能够熟练掌握黄金分割比例4、D【解析】【分析】直接利用位似图形的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,进而得出答案【详解】解:以原点O为位似中心,位似比为2,把四边形OABC放大,C(-1,2), 点C对应点的坐标为(-12,22)或,即(-2,4)或(2,-4), 故选D【点睛】本题考查了位似图形的性质,掌握“位似图形对应点坐标变化规律是解本题关键” 5、B【解析】【分析】根据相似多边形的性质,可得 ,再根据四边形的内角和等于360,即可求解【详解

10、】解:如图,两个四边形相似, ,两个四边形相似,且四边形的内角和等于360, 故选:B【点睛】本题主要考查了相似多边形的性质,多边形的内角和,熟练掌握相似多边形的对应边成比例,对应角相等是解题的关键6、B【解析】【分析】由矩形可证得,则,设AB=AF=CD=x ,AE=AD=y,即可求得的值【详解】四边形ABCD是矩形DCE=AEC,CDA=EAD设AB=AF=CD=x ,AE=AD=y,则有给方程两边同时除以,令为t则有解得,(舍去)则t=则=故答案选:B【点睛】本题考查了相似三角形性质及判定,将表示为是解题的关键7、A【解析】【分析】设CE=x,由四边形EFDC与四边形BEFA相似,根据相

11、似多边形对应边的比相等列出比例式,求解即可【详解】解:设CE=x,四边形EFDC与四边形BEFA相似,AB=3,BE=2,EF=AB,解得:x=4.5,故选:A【点睛】本题考查了相似多边形的性质,本题的关键是根据四边形EFDC与四边形BEFA相似得到比例式8、C【解析】【分析】过点作于点,设与轴交于点,根据题意, ,求得,进而可得,即,设则,根据面积为120求得的值,点A、E同时在反比例函数的图象上,表示出,则,即 ,即可求得的值【详解】解:如图,过点作于点,设与轴交于点,直线的解析式为,令,令,设则在中,四边形是矩形,矩形的面积为120,即解得根据题意,点A、E同时在反比例函数的图象上,设,

12、则,即 即可故选C【点睛】本题考查了反比例函数与几何图形,相似三角形的性质与判定,一次函数与坐标轴交点问题,矩形的性质,熟练运用以上知识是解题的关键9、D【解析】【分析】根据相似多边形的性质,相似三角形的判定,三角形重心的性质逐项分析判断即可【详解】解:A. 所有菱形不一定相似,故该选项不正确,不符合题意;B. 两边对应成比例且夹角对应相等的两个三角形相似,故该选项不正确,不符合题意;C. 三角形的重心到一个顶点的距离, 等于它到这个顶点对边中点距离的两倍,故该选项不正确,不符合题意;D. 斜边和直角边对应成比例, 两个直角三角形相似,故该选项正确,符合题意;故选D【点睛】本题考查了相似多边形

13、的性质,相似三角形的判定,三角形重心的性质,掌握以上知识是解题的关键10、B【解析】【分析】设,则,证明,得出,根据,再证明,得出,可以得出,得出等式,求解即可得到【详解】解:设,则,由题意知:,在和中,在中由勾股定理得:,在和中,解得:,故选:B【点睛】本题考查正方形的性质、三角形相似、三角形全等、勾股定理,解题的关键是掌握相应的判定定理,通过转化的思想及等量代换的思想进行求解二、填空题1、#【解析】【分析】由,得到,根据相似三角形的性质得到对应边成比例,代入数据即可得到结果【详解】在与中,解得:【点睛】本题考查了相似三角形的性质和判定的应用,掌握相似三角形的判定定理和性质是解题的关键2、5

14、【解析】【分析】证明,可得,可求得,由平行线分线段成比例可求OD的长,再根据直角三角形斜边上的中线求出CD,即可求解【详解】解:如图,CD交AF于点O,且且故答案为:5【点睛】本题考查相似三角形的判定与性质、直角三角形的性质等知识,是重要考点,掌握相关知识是解题关机键3、【解析】【分析】由题意根据ABCD、ACDE,可得出PCQPAB,PCQRDQ,PABRDQ,进而根据相似三角形的性质,对应边成比例即可得出所求线段的比例关系【详解】解:四边形ABCD和四边形ACED都是平行四边形,BC=AD=CE,ACDE,BC:CE=BP:PR,BP=PR,PC是BER的中位线,BP=PR,又PCDR,P

15、CQRDQ又点R是DE中点,DR=RE, ,QR=2PQ又BP=PR=PQ+QR=3PQ,BP:PQ:QR=3:1:2故答案为:3:1:2【点睛】本题考查相似三角形的判定和性质,注意掌握如果两个三角形的三组对应边的比相等,那么这两个三角形相似;如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;如果两个三角形的两个对应角相等,那么这两个三角形相似4、【解析】【分析】先根据重心到顶点的距离等于到对边中点的距离的2倍得到,在根据EFBC找到与EF、BC有关的比例即可【详解】如图所示,设AG交BC于D点G是ABC的重心,AG=2GD,DEBC,故答案为:【点睛】本题考查了三角形的重

16、心,平行线分线段成比例熟记三角形的重心到顶点的距离等于到对边中点的距离的2倍是解题的关键5、【解析】【分析】过A点作AHBC,过D点作DEBC,得到BH=CH,ABHDBE,设BC=10a,求出BE=4a、DE=6a,根据RtBDE中,BD2=DE2+BE2,求出a,故可求解【详解】过A点作AHBC,过D点作DEBCBH=CH,设BC=10aBH=CH=5a=AB,BD=AHBC,DEBCDEAHABHDBEBE=4aCE=10a-4a=6a,DEBCCDE=180-45-90=45ADE是等腰直角三角形DE=CE=6a在RtBDE中,BD2=DE2+BE2即()2=(6a)2+(4a)2解得

17、a=(负值舍去)BC=10a=故答案为:【点睛】此题主要考查三角形内线段求解,解题的关键是熟知相似三角形的判定与性质、等腰三角形的性质及勾股定理的运用三、解答题1、(1)1;(2);(3)或【解析】【分析】(1)先用等量代换判断出,得到,再判断出即可;(2)方法和一样,先用等量代换判断出,得到,再判断出即可;(3)由的结论得出,判断出,求出DE,再利用勾股定理,计算出即可【详解】解:当时,即:,即,即,成立如图3,又,即,由有,如图4图5图6,连接EF在中,如图4,当E在线段AC上时,在中,根据勾股定理得,或舍如图5,当E在AC延长线上时,在中,根据勾股定理得,或舍,如图6,当E在CA延长线上

18、时,在中,根据勾股定理得,或(舍),综上:或【点睛】本题是三角形综合题,主要考查了三角形相似的性质和判定,勾股定理,判断相似是解决本题的关键,求CE是本题的难点2、(1)EF=2(2)【解析】【分析】(1)根据DEBC证明ADE是等边三角形,再根据D是AB中点,可证明BFD是等边三角形,在证明DEF是等边三角形,从而求得EF=2,(2)过点A作AM垂直BC于点M,可证DBFABM,由相似可求出DF=,在利用勾股定理即可求出EF【详解】解:(1)ABC是等边三角形,A=B=C=60,DEBC,ADE=ABC=60,A=ADE=60,ADE是等边三角形,AD=DE=2,D是AB中点,BD=AD=2

19、,DF平分BDE,BDF=EDF=BDE=(180-60)=60,又B=60,BFD是等边三角形,DF=BD=2,DF=DE=2,EDF=60,DEF是等边三角形,EF=DE=DF=2;(2)过点A作AM垂直BC于点M,DEBC,DFDE,BFD=FDE=90,DFB=AMB=90,又B=B,DBFABM,D为AB中点,,DF=AM,AM是等边三角形BC边上的高,M是BC的中点, BM=BC=a,AM=,DF=AM=,在中,EF=【点睛】本题主要考查等边三角形的性质和判定,三角形的相似和勾股定理,熟练掌握三角形的相似是解决本题的关键3、(1)见解析;(2)见解析,B2(-6,2),C2(-4,

20、-2)【解析】【分析】(1)根据旋转的性质画出B、C顺时针旋转90后的对应点,顺次连接即可;(2)根据位似的性质画出图形,利用点的位置写出坐标即可【详解】解:(1)如图所示,OBC就是所求三角形;(2)如图所示,O就是所求三角形;点B2、C2的坐标为:B2(-6,2),C2(-4,-2)【点睛】此题主要考查了位似变换和旋转作图,正确得出对应点位置是解题关键4、(1)见解析;(2)见解析;(3)【解析】【分析】(1)根据正方形的性质及各角之间的等量代换可得3=5,再依据相似三角形的判定定理即可证明;(2)根据(1)中结论,利用相似三角形的性质可得:DMDE=DHDF,再由MDH=EDF,可得DM

21、HDEF,利用角之间的关系及等腰三角形的判定即可证明;(3)根据正方形的性质及各角之间的关系可得DBGDCN,再由相似三角形的性质可得:DNDG=DC2DC=22,BGAG=BPAD,根据中点的性质及线段间的关系可得AG=2AB=4,再利用勾股定理计算即可得【详解】解:(1)证明:如图所示,四边形ABCD是正方形,1=2=ADB=BDC=45,BD=2AD,DEF是等腰直角三角形,DF=2ED,EDF=45,ADB=EDF=45,3+4=5+4,3=5,又1=2,ADMBDH;(2)ADMBDH,DMDH=ADBD=AD2AD=22,又DEDF=DE2DE=22,DMDH=DEDF=22,DM

22、DE=DHDF,又MDH=EDF,DMHDEF,DMH=DEF=90,又MDH=45,DMH为等腰直角三角形;(3)如图,四边形ABCD为正方形BDC=ACD=ABD=45,BD=2CD,AB=BC=CD=2,BDC=EDF=45,6+7=8+7,6=8,ADB=ACD=45,DBG=DCN=135,又6=8,DBGDCN,DN:DG=DC:DB,DNDG=DC2DC=22,DN=22DG,BGAG=BPAD,P为BC的中点,BP=12BC=12AD,BPAD=12,BGAG=12,B为AG的中点,AG=2AB=4,在RtADG中,DG=AD2+AG2=22+42=25,DN=22DG=222

23、5=10【点睛】本题考查正方形的性质、相似三角形的判定与性质、等腰直角三角形的性质等知识,解题的关键是灵活运用所学知识解决问题5、尝试:;拓展:;应用:点的运动路径长为或或或或【解析】【分析】尝试:根据是由ABC旋转得到的,可得到,即可推出,则;拓展:由AC=BC,ACB=90,可得,同(1)可证,得到,由此求解即可;应用:分点在延长线上时,点在的延长线上时,当点落在边所在直线上时,当点落在边所在直线上时,当点与点重合时,点旋转一周时,五种情况讨论求解即可得到答案【详解】解:尝试:,理由如下:是由ABC旋转得到的,即,;故答案为:;拓展:AC=BC,ACB=90,同(1)原理可证,;应用:在中,当点落在所在直线上时,有两种情况:若点在延长线上时,如图所示:由旋转的旋转可得:,点C运动的路径即为,;若点在的延长线上时,如图所示,此时点,三点共线,点C运动的路径即为,由旋转的性质可得,旋转角,弧;当点落在边所在直线上时,如图所示,点C运动的路径即为,由旋转的性质可得,弧;当点落在边所在直线上时,如图所示,此时点,三点共线,旋转角为,弧当点与点重合时,点旋转一周,弧当点的对应点恰好落在的边所在直线上时,点的运动路径长为或或或或【点睛】本题主要考查了旋转的性质,求弧长,相似三角形的性质与判定,勾股定理,解题的关键在于能够熟练掌握相似三角形的性质与判定条件,以及弧长公式

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁