2021-2022学年基础强化沪教版七年级数学第二学期第十四章三角形专题练习试题(无超纲).docx

上传人:可****阿 文档编号:30724655 上传时间:2022-08-06 格式:DOCX 页数:37 大小:976.82KB
返回 下载 相关 举报
2021-2022学年基础强化沪教版七年级数学第二学期第十四章三角形专题练习试题(无超纲).docx_第1页
第1页 / 共37页
2021-2022学年基础强化沪教版七年级数学第二学期第十四章三角形专题练习试题(无超纲).docx_第2页
第2页 / 共37页
点击查看更多>>
资源描述

《2021-2022学年基础强化沪教版七年级数学第二学期第十四章三角形专题练习试题(无超纲).docx》由会员分享,可在线阅读,更多相关《2021-2022学年基础强化沪教版七年级数学第二学期第十四章三角形专题练习试题(无超纲).docx(37页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、沪教版七年级数学第二学期第十四章三角形专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,是等边三角形,点在边上,则的度数为( )A25B60C90D1002、如图,ABAC,点D、E分别在AB

2、、AC上,补充一个条件后,仍不能判定ABEACD的是( )ABCBADAECBECDDAEBADC3、等腰三角形的一个角是80,则它的一个底角的度数是( )A50B80C50或80D100或804、已知等腰三角形两边的长分别为3和7,则此等腰三角形的周长为( )A10B15C17D195、小明把一副含有45,30角的直角三角板如图摆放其中CF90,A45,D30,则a+等于( )A180B210C360D2706、下列长度的三条线段能组成三角形的是( )A2,3,6B2,4,7C3,3,5D3,3,77、如图,等边中,D为AC中点,点P、Q分别为AB、AD上的点,在BD上有一动点E,则的最小值

3、为( )A7B8C10D128、如图,在ABC和DEF中,AD,AFDC,添加下列条件中的一个仍无法证明ABCDEF的是()ABCEFBABDECBEDACBDFE9、如图,点F,C在BE上,ACDF,BFEC,ABDE,AC与DF相交于点G,则与2DFE相等的是()AA+DB3BC180FGCDACE+B10、一个三角形三个内角的度数分别是x,y,z若,则这个三角形是( )A等腰三角形B等边三角形C等腰直角三角形D不存在第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,ABC中,ABACDC,D在BC上,且ADDB,则BAC_2、如图,在等边三角形中,是边的高线,

4、延长至点,使,则BE的长为_3、等腰三角形的一条边长为5,周长为20,则该三角形的腰长为_4、如图,点F,A,D,C在同一条直线上,则AC等于_5、如图,是等腰直角三角形,AB是斜边,以BC为一边在右侧作等边三角形BCD,连接AD与BC交于点E,则的度数为_度三、解答题(10小题,每小题5分,共计50分)1、直线l经过点A,在直线l上方,(1)如图1,过点B,C作直线l的垂线,垂足分别为D、E求证:(2)如图2,D,A,E三点在直线l上,若(为任意锐角或钝角),猜想线段DE、BD、CE有何数量关系?并给出证明(3)如图3,过点B作直线l上的垂线,垂足为F,点D是BF延长线上的一个动点,连结AD

5、,作,使得,连结DE,CE直线l与CE交于点G求证:G是CE的中点2、如图,AD为ABC的角平分线(1)如图1,若BEAD于点E,交AC于点F,AB4,AC7则CF ;(2)如图2,CGAD于点G,连接BG,若ABG的面积是6,求ABC的面积;(3)如图3,若B2C,ABm,ACn,则CD的长为 (用含m,n的式子表示)3、阅读以下材料,并按要求完成相应的任务:从正方形的一个顶点引出夹角为的两条射线,并连接它们与该顶点的两对边的交点构成的基本平面几何模型称为半角模型半角模型可证出多个几何结论,例如:如下图1,在正方形中,以为顶点的,、与、边分别交于、两点易证得大致证明思路:如图2,将绕点顺时针

6、旋转,得到,由可得、三点共线,进而可证明,故任务:如图3,在四边形中,以为顶点的,、与、边分别交于、两点请参照阅读材料中的解题方法,你认为结论是否依然成立,若成立,请写出证明过程;若不成立,请说明理由4、如图,在四边形ABCD中,点E在BC上,连接DE、AC相交于点F,BAECAD,ABAE,ADAC(1)求证:DECBAE;(2)如图2,当BAECAD30,ADAB时,延长DE、AB交于点G,请直接写出图中除ABE、ADC以外的等腰三角形5、如图,ABC是等边三角形,点D、E、F分别同时从A、B、C以同样的速度沿AB、BC、CA方向运动,当点D运动到点B时,三个点都停止运动(1)在运动过程中

7、DEF是什么形状的三角形,并说明理由;(2)若运动到某一时刻时,BE=4,DEC=150,求等边ABC的周长;6、如图,在ABC中,CE平分ACB交AB于点E,AD是ABC边BC上的高,AD与CE相交于点F,且ACB80,求AFE的度数7、如图,CEAB于点E,BFAC于点F,BDCD(1)求证:BDECDF;(2)求证:AEAF8、如图,在等边三角形ABC中,点P为ABC内一点,连接AP,BP,CP,将线段AP绕点A 顺时针旋转60得到 ,连接 (1)用等式表示 与CP的数量关系,并证明;(2)当BPC120时, 直接写出 的度数为 ;若M为BC的中点,连接PM,请用等式表示PM与AP的数量

8、关系,并证明9、在复习课上,老师布置了一道思考题:如图所示,点M,N分别在等边的边上,且,交于点Q求证:同学们利用有关知识完成了解答后,老师又提出了下列问题:(1)若将题中“”与“”的位置交换,得到的是否仍是真命题?请你给出答案并说明理由(2)若将题中的点M,N分别移动到的延长线上,是否仍能得到?请你画出图形,给出答案并说明理由10、如图,E为AB上一点,BDAC,ABBD,ACBE求证:BCDE-参考答案-一、单选题1、D【分析】由等边三角形的性质及三角形外角定理即可求得结果【详解】是等边三角形C=60ADB=DBC+C=40+60=100故选:D【点睛】本题考查了等边三角形的性质、三角形外

9、角的性质,掌握这两个性质是关键2、C【分析】根据全等三角形的判定定理进行判断即可【详解】解:根据题意可知:ABAC,若,则根据可以证明ABEACD,故A不符合题意;若ADAE,则根据可以证明ABEACD,故B不符合题意;若BECD,则根据不可以证明ABEACD,故C符合题意;若AEBADC,则根据可以证明ABEACD,故D不符合题意;故选:C【点睛】本题考查了全等三角形的判定,熟练掌握全等三角形的判定定理是解本题的关键3、C【分析】已知给出一个角的的度数为80,没有明确是顶角还是底角,要分类讨论,联合内角和求出底角即可【详解】解:等腰三角形的一个角是80,当80为底角时,它的一个底角是80,当

10、80为顶角时,它的一个底角是,则它的一个底角是50或80故选:C【点睛】本题考查等腰三角形的性质,内角和定理,掌握分类讨论的思想是解决问题的关键4、C【分析】等腰三角形两边的长为3和7,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论【详解】解:当腰是3,底边是7时,3+37,不满足三角形的三边关系,因此舍去当底边是3,腰长是7时,3+77,能构成三角形,则其周长3+7+717故选:C【点睛】本题考查了等腰三角形的性质和三角形的三边关系,解题时注意:若没有明确腰和底边,则一定要分类进行讨论,还应验证各种情况是否能构成三角形,这是解题的关键5、B【分析】已知,得到,根据外角性质,得到,

11、再将两式相加,等量代换,即可得解;【详解】解:如图所示,;故选D【点睛】本题主要考查了三角形外角定理的应用,准确分析计算是解题的关键6、C【分析】根据三角形的三边关系,逐项判断即可求解【详解】解:A、因为 ,所以不能组成三角形,故本选项不符合题意;B、因为 ,所以不能组成三角形,故本选项不符合题意;C、因为 ,所以能组成三角形,故本选项符合题意;D、因为 ,所以不能组成三角形,故本选项不符合题意;故选:C【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键7、C【分析】作点关于的对称点,连接交于,连接,此时的值最小,最小值,据此求解即可【详

12、解】解:如图,是等边三角形,D为AC中点,作点关于的对称点,连接交于,连接,此时的值最小最小值,是等边三角形,的最小值为故选:C【点睛】本题考查等边三角形的性质和判定,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型8、A【分析】根据AF=DC求出AC=DF,再根据全等三角形的判定定理逐个判断即可【详解】解:AF=DC,AF+FC=DC+FC,即AC=DF,A、BC=EF,AC=DF,A=D,不符合全等三角形的判定定理,不能推出ABCDEF,故本选项符合题意;B、AB=DE,A=D,AC=DF,符合全等三角形的判定定理SAS,能推出ABCDEF,故本选项不符合题意

13、;CB=E,A=D,AC=DF,符合全等三角形的判定定理AAS,能推出ABCDEF,故本选项不符合题意;DACB=DFE,AC=DF,A=D,符合全等三角形的判定定理ASA,能推出ABCDEF,故本选项不符合题意;故选:A【点睛】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL9、C【详解】由题意根据等式的性质得出BCEF,进而利用SSS证明ABC与DEF全等,利用全等三角形的性质得出ACBDFE,最后利用三角形内角和进行分析解答【分析】解:BFEC,BF+FCEC+FC,BCEF,在

14、ABC与DEF中,ABCDEF(SSS),ACBDFE,2DFE180FGC,故选:C【点睛】本题考查全等三角形的判定与性质,其中全等三角形的判定方法有:SSS;SAS;ASA;AAS;以及HL(直角三角形的判定方法)10、C【分析】根据绝对值及平方的非负性可得,再由三角形内角和定理将两个式子代入求解可得,即可确定三角形的形状【详解】解:,且,解得:,三角形为等腰直角三角形,故选:C【点睛】题目主要考查绝对值及平方的非负性,三角形内角和定理,等腰三角形的判定等,理解题意,列出式子求解是解题关键二、填空题1、108108度【分析】先设Bx,由ABAC可知,Cx,由ADDB可知BDABx,由三角形

15、外角的性质可知ADCB+DAB2x,根据DCCA可知ADCCAD2x,再在ABC中,由三角形内角和定理即可得出关于x的一元一次方程,求出x的值,从而求解【详解】设Bx,ABAC,CBx,ADDB,BDABx,ADCB+DAB2x,DCCA,ADCCAD2x,在ABC中,x+x+2x+x180,解得:x36BAC108故答案为:108【点睛】此题主要考查等腰三角形的判定和性质、三角形的内角和定理,解题的关键是熟练进行逻辑推理2、3【分析】由等腰三角形三线合一的性质,得到AD=DC=1,由BE=BC+CE不难求解【详解】解:三角形是等边三角形,BCAC2,又 是边的高线,DC, 1,故答案为:3.

16、【点睛】本题考查了等边三角形的性质,掌握等腰三角形三线合一的性质是解本题的关键3、7.5【分析】根据腰长是否为5,分两类情况进行求解即可【详解】解:当腰长为5时,由周长可知:底边长为10,且故不满足三边关系,不成立,当腰长不为5时,则底边长为5,由周长可得:腰长为满足三边关系,故腰长为7.5,故答案为:7.5【点睛】本题主要是考查了等腰三角形的性质以及三角形的三边关系,熟练根据腰长来进行分类讨论,这是解决本题的关键4、6.5【分析】由全等三角形的性质可得到AC=DF,从而推出AF=CD,再由,求出,则【详解】解:ABCDEF,AC=DF,即AF+AD=CD+AD,AF=CD,故答案为:6.5【

17、点睛】本题主要考查了全等三角形的性质,线段的和差,解题的关键在于能够熟练掌握全等三角形的性质5、75【分析】由题意,是等腰三角形,然后求出的度数,再根据三角形的外角性质,即可求出的度数【详解】解:是等腰直角三角形,AC=BC,ABC=BAC=45,ACB=90,BCD是等边三角形,BC=CD,BCD=60,AC=CD,ACD=90+60=150,是等腰三角形,;故答案为:75【点睛】本题考查了等边三角形的性质,等腰直角三角形的性质,三角形的外角性质,三角形的内角和定理,解题的关键是掌握所学的知识,正确的求出三、解答题1、(1)见解析;(2)猜想:,见解析;(3)见解析【分析】(1)先证明和,再

18、根据证明即可;(2)根据AAS证明得,进一步可得出结论;(3)分别过点C、E作,同(1)可证,得出CM=EN,证明得,从而可得结论【详解】解:(1)证明:,在与中,(2)猜想:,在与中,(3)分别过点C、E作,同(1)可证, 在与中,G为CE的中点【点睛】本题考查了全等三角形的判定与性质、垂线的定义、角的互余关系,证得ABDCAE是解决问题的关键2、(1)3(2)12(3)【分析】(1)利用ASA证明AEFABE,得AE=AB=4,得出答案;(2)延长CG、AB交于点H,设SBGC=SHGB=a,用两种方法表示ACH的面积即可;(3)在AC上取AN=AB,可得CD=DN=n-m,根据ABD和A

19、CD的高相等,面积比等于底之比可求出CD的长(1)AD是ABC的平分线,BAD=CAD,BEAD,BEA=FEA,在AEF和AEB中, ,AEFAEB(ASA),AF=AB=4,AC=7 CF=AC-AF=7-4=3,故答案为:3;(2)延长CG、AB交于点H,如图,由(1)知AC=AH,点G为CH的中点,设SBGC=SHGB=a,根据ACH的面积可得:SABC+2a=2(6+a),SABC=12;(3)在AC上取AN=AB,如图,AD是ABC的平分线,NAD=BAD,在ADN与ADB中,ADNADB(SAS),AND=B,DN=BD,B=2C,AND=2C,C=CDN,CN=DN=AC-AB

20、=n-m,BD=DN=n-m,根据ABD和ACD的高相等,面积比等于底之比可得:,故答案为:【点睛】本题主要考查了全等三角形的判定与性质,角平分线的定义,三角形的面积等知识,利用角的轴对称性构造全等三角形是解题的关键3、成立,证明见解析【分析】根据阅读材料将ADF旋转120再证全等即可求得EF= BE+DF 【详解】解:成立证明:将绕点顺时针旋转,得到,、三点共线,【点睛】本题考查旋转中的三角形全等,读懂材料并运用所学的全等知识是本题关键4、(1)见解析;(2)AEF、ADG、DCF、ECD【分析】(1)根据已知条件得到BAECAD,根据全等三角形的性质得到AEDABC,根据等腰三角形的性质得

21、到ABCAEB,于是得到结论;(2)根据等腰三角形的判定定理即可得到结论【详解】证明:(1)如图1,BAECAD, BAECAECADCAE,即BACEAD,在AED与ABC中,AEDABC,AEDABC,BAEABCAEB180,CEDAEDAEB180,ABAE,ABCAEB,BAE2AEB180,CED2AEB180,DECBAE;(2)解:如图2, BAECAD30,ABCAEBACDADC75,由(1)得:AEDABC75,DECBAE30,ADAB,BAD90,CAE30,AFE180307575,AEFAFE, AEF是等腰三角形, BEGDEC30,ABC75,G45,在RtA

22、GD中,ADG45,ADG是等腰直角三角形, CDF754530,DCFDFC75,DCF是等腰直角三角形;CEDEDC30,ECD是等腰三角形【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定,等腰三角形的判定和性质,熟练掌握全等三角形的判定与性质是解题的关键5、(1)DEF是等边三角形,理由见解析(2)等边ABC的周长为【分析】(1)利用DEF是等边三角形的性质以及三点的运动情况,求证和,进而证明,最后即可说明DEF是等边三角形(2)利用题(1)的条件即DEC=150,得出是含角的直角三角形,求出,最后求解出等边ABC的长,最后即可求出等边ABC的周长【详解】(1)解:DEF是

23、等边三角形,证明:由点D、E、F的运动情况可知:,ABC是等边三角形,,,,,在与中, ,同理可证,进而有,故DEF是等边三角形(2)解:由(1)可知DEF是等边三角形,且, 在中, ,等边ABC的周长为【点睛】本题主要是考查了全等三角形的性质及判定、等边三角形的判定及性质和含角直角三角形的性质,熟练利用等边三角形的性质,找到相等条件,进而证明全等三角形,综合利用全等三角形以及含角直角三角形的性质,求出对应边长,是解决该题的关键6、AFE=50【分析】根据CE平分ACB,ACB80,得出ECB=,根据高线性质得出ADC=90,根据三角形内角和得出DFC=180-ADC-ECB=180-90-4

24、0=50,利用对顶角性质得出AFE=DFC=50即可【详解】解:CE平分ACB,ACB80,ECB=,AD是ABC边BC上的高,ADBC,ADC=90,DFC=180-ADC-ECB=180-90-40=50,AFE=DFC=50【点睛】本题考查角平分线定义,垂线性质,三角形内角和,对顶角性质,掌握角平分线定义,垂线性质,三角形内角和,对顶角性质是解题关键7、(1)见解析;(2)见解析【分析】(1)根据CEAB,BFAC就可以得出BED=CFD=90,就可以由AAS得出结论;(2)由(1)得DE=DF,就可以得出BF=CE,由AAS就可以得出AFBAEC就可以得出结论【详解】证明:(1)CEA

25、B,BFAC,BEDCFD90,在BED和CFD中,BEDCFD(AAS);(2)BEDCFD,DEDF,BD+DFCD+DE,BFCE,在ABF和ACE中,ABFACE(AAS),AEAF【点睛】本题考查了垂直的性质的运用,全等三角形的判定与性质的运用,等式的性质的运用,解答时证明三角形全等是关键8、(1),理由见解析;(2)60;PM,见解析【分析】(1)根据等边三角形的性质,可得ABAC,BAC60,再由由旋转可知:从而得到,可证得,即可求解 ;(2)由BPC120,可得PBCPCB60根据等边三角形的性质,可得BAC60,从而得到ABCACB120,进而得到ABPACP60再由,可得

26、,即可求解;延长PM到N,使得NMPM,连接BN可先证得PCMNBM从而得到CPBN,PCMNBM进而得到 根据可得,可证得,从而得到 再由 为等边三角形,可得 从而得到 ,即可求解【详解】解:(1) 理由如下:在等边三角形ABC中,ABAC,BAC60,由旋转可知: 即在和ACP中 (2)BPC120,PBCPCB60在等边三角形ABC中,BAC60,ABCACB120,ABPACP60 ,ABPABP60即 ;PM 理由如下:如图,延长PM到N,使得NMPM,连接BNM为BC的中点,BMCM在PCM和NBM中 PCMNBM(SAS)CPBN,PCMNBM BPC120,PBCPCB60PB

27、CNBM60即NBP60ABCACB120,ABPACP60ABPABP60即 在PNB和 中 (SAS) 为等边三角形, ,PM 【点睛】本题主要考查了等边三角形判定和性质,全等三角形的判定和性质,图形的旋转,熟练掌握等边三角形判定和性质定理,全等三角形的判定和性质定理,图形的旋转的性质是解题的关键9、(1)仍是真命题,证明见解析(2)仍能得到,作图和证明见解析【分析】(1)由角边角得出和全等,对应边相等即可(2)由(1)问可知BM=CN,故可由边角边得出和全等,对应角相等,即可得出(1)在和中有故结论仍为真命题(2)BM=CNCM=ANAB=AC,在和中有故仍能得到,如图所示【点睛】本题考查了全等三角形的判定和性质,从判定两个三角形全等的方法可知,要判定两个三角形全等,需要知道这两个三角形分别有三个元素(其中至少一个元素是边)对应相等,这样就可以利用题目中的已知边角迅速、准确地确定要补充的边角,有目的地完善三角形全等的条件,从而得到判定两个三角形全等的思路10、见解析【分析】根据平行线的性质可得,利用全等三角形的判定定理即可证明【详解】证明:, 在和中, 【点睛】题目主要考查全等三角形的判定定理和平行线的性质,熟练掌握全等三角形的判定定理是解题关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁