2022年强化训练沪教版(上海)七年级数学第二学期第十二章实数定向测试试题(含详细解析).docx

上传人:可****阿 文档编号:30724617 上传时间:2022-08-06 格式:DOCX 页数:20 大小:382.33KB
返回 下载 相关 举报
2022年强化训练沪教版(上海)七年级数学第二学期第十二章实数定向测试试题(含详细解析).docx_第1页
第1页 / 共20页
2022年强化训练沪教版(上海)七年级数学第二学期第十二章实数定向测试试题(含详细解析).docx_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《2022年强化训练沪教版(上海)七年级数学第二学期第十二章实数定向测试试题(含详细解析).docx》由会员分享,可在线阅读,更多相关《2022年强化训练沪教版(上海)七年级数学第二学期第十二章实数定向测试试题(含详细解析).docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、沪教版(上海)七年级数学第二学期第十二章实数定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法正确的是( )A是最小的正无理数B绝对值最小的实数不存在C两个无理数的和不一定是无理数D有理数与

2、数轴上的点一一对应2、点A在数轴上的位置如图所示,则点A表示的数可能是( )ABCD3、如图,数轴上的点A,B,O,C,D分别表示数,0,1,2,则表示数的点P应落在( )A线段AB上B线段BO上C线段OC上D线段CD上4、在下列四个选项中,数值最接近的是( )A2B3C4D55、在以下实数:,3.1411,8,0.020020002中,无理数有()A2个B3个C4个D5个6、100的算术平方根是( )A10BCD7、下列运算正确的是( )ABCD8、下列说法正确的是( )A的相反数是B2是4的平方根C是无理数D9、在3,0,2,这组数中,最小的数是()AB3C0D210、下列说法中正确的有(

3、)2都是8的立方根 x的平方根是3 2A1个B2个C3个D4个第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、比较大小:|4|_(填“”、“”或“”)2、的平方根是_3、计算_4、实数,在数轴上对应的点的位置如图所示,则|a-b|-|b+a|=_5、比较大小:_2(填“”或“”或“”)三、解答题(10小题,每小题5分,共计50分)1、直接写出结果:(1)_;(2)_;(3)的立方根_;(4)若x2(7)2,则x_2、已知是正数的两个平方根,且,求值,及的值3、大家知道是无理数,而无理数是无限不循环小数因此的小数部分我们不可能全部写出来,于是小燕用来表示的小数部分理由是:

4、对于正无理数,用本身减去其整数部分,差就是其小数部分因为的整数部分为1,所以的小数部分为参考小燕同学的做法,解答下列问题:(1)写出的小数部分为_;(2)已知与的小数部分分别为a和b,求a22abb2的值;(3)如果,其中x是整数,0y1,那么_(4)设无理数(m为正整数)的整数部分为n,那么的小数部分为_(用含m,n的式子表示)4、已知的立方根是2,算术平方根是4,求的算术平方根5、对于有理数a,b,定义运算:(1)计算的值; (2)填空_:(填“”、“”或“”)(3)与相等吗?若相等,请说明理由6、计算:(1) (2)7、求下列各式中的值:(1); (2)8、我们知道,假分数可以化为整数与

5、真分数的和的形式例如:=1+ 在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,称之为“假分式”;当分子的次数小于分母的次数时,称之为“真分式”例如:像,这样的分式是假分式;像,这样的分式是真分式类似的,假分式也可以化为整式与真分式的和的形式 例如:;解决下列问题:(1)写出一个假分式为: ;(2)将分式化为整式与真分式的和的形式为: ;(直接写出结果即可)(3)如果分式的值为整数,求x的整数值9、计算:(1)(2)()210、计算:-参考答案-一、单选题1、C【分析】利用正无理数,绝对值,以及数轴的性质判断即可【详解】解:、不存在最小的正无理数,不符合题意;、绝对值最小

6、的实数是0,不符合题意;、两个无理数的和不一定是无理数,例如:,符合题意;、实数与数轴上的点一一对应,不符合题意故选:C【点睛】本题考查了实数的运算,实数与数轴,解题的关键是熟练掌握各自的性质2、A【分析】根据数轴上表示的数在4至4.5之间,再估算各选项的取值,即可得解【详解】解:观察得到点A表示的数在4至4.5之间,A、161820.25,44.5,故该选项符合题意;B、91016,34,故该选项不符合题意;C、20.252425,4.55,故该选项不符合题意;D、253036,57,3,-3,-302,故选:B【点睛】此题考查了实数的估值,实数的大小比较,正确掌握实数的估值计算是解题的关键

7、10、B【分析】根据平方根和立方根的定义进行判断即可【详解】解:2是8的立方根,-2不是8的立方根,原说法错误;=x,正确;,9的平方根是3,原说法错误;=2,正确;综上,正确的有共2个,故选:B【点睛】本题考查了立方根,平方根,熟练掌握立方根的定义是解本题的关键二、填空题1、【分析】先化简绝对值,再根据实数的大小比较法则即可得【详解】解:,因为,所以,即,故答案为:【点睛】本题考查了绝对值、实数的大小比较,熟练掌握实数的大小比较法则是解题关键2、【分析】根据平方的运算,可得,即可求解【详解】解:,的平方根是,故答案为:【点睛】本题主要考查了平方和平方根的性质,熟练掌握一个正数有两个平方根,且

8、互为相反数是解题的关键3、#【分析】根据立方根和算术平方根的求解方法求解即可【详解】解:,故答案为:【点睛】本题主要考查了算术平方根和立方根,熟知二者的定义是解题的关键4、2b【分析】由题意根据绝对值的意义即非负数的绝对值是它本身,负数的绝对值是它的相反数同时注意数轴上右边的数总大于左边的数进行分析计算即可解答【详解】解:由数轴可得:a-b0,b+a0,|a-b|-|b+a|=b-a+b+a=2b.故答案为:2b【点睛】本题主要考查实数与数轴之间的对应关系及绝对值的化简,注意掌握根据点在数轴上的位置来正确判断出代数式值的符号5、【分析】根据即可得出答案【详解】,故答案为:【点睛】本题主要考查的

9、是比较实数的大小,熟练掌握相关知识是解题的关键三、解答题1、(1)8;(2)0;(3)2;(4)【分析】(1)根据算术平方根的计算法则求解即可;(2)根据算术平方根的计算法则求解即可;(3)根据立方根的求解方法求解即可;(4)根据求平方根的方法解方程即可【详解】解:(1),故答案为:8;(2),故答案为:0;(3),的立方根是2,故答案为:2;(4)x2(7)2,x249,x=7故答案为:7【点睛】本题主要考查了实数的运算,立方根,算术平方根,利用平方根解方程等等,熟知相关计算法则是解题的关键2、, ,【分析】根据正数的平方根有2个,且互为相反数,以及求出与的值即可【详解】解:因为,是正数的两

10、个平方根,可得:,把代入,解得:,所以,所以【点睛】此题考查了平方根,明确一个正数的两个平方根互为相反数,和为0是解题的关键3、(1);(2)1;(3);(4)【分析】(1)由题意易得,则有的整数部分为3,然后问题可求解;(2)由题意易得,则有,然后可得,然后根据完全平方公式可进行求解;(3)由题意易得,则有的小数部分为,然后可得,进而问题可求解;(4)根据题意可直接进行求解【详解】解:(1),的整数部分为3,的小数部分为;故答案为;(2),与的小数部分分别为a和b,;(3)由可知,的小数部分为,x是整数,0y1,;故答案为;(4)无理数(m为正整数)的整数部分为n,的小数部分为,的小数部分即

11、为的小数部分加1,为;故答案为【点睛】本题主要考查立方根、无理数的估算及代数式的值,熟练掌握立方根、无理数的估算及代数式的值是解题的关键4、【分析】根据立方根、算术平方根解决此题【详解】解:由题意得:2a+4=8,3a+b-1=16a=2,b=114a+b=8+11=194a+b的算术平方根为【点睛】本题考查了立方根、算术平方根,熟练掌握立方根、算术平方根是解决本题的关键5、(1);(2)=;(3)相等,证明见详解【分析】(1)按照给定的运算程序,一步一步计算即可; (2)先按新定义运算,再比较大小; (3)按新定义分别运算即可说明理由【详解】解:(1);(2),=,故答案是:=;(3)相等,

12、=【点睛】此题是定义新运算题型,直接把对应的数字代入所给的式子可求出所要的结果6、(1)5;(2)【分析】(1)分别求解算术平方根与立方根,再进行加减运算即可;(2)按照多项式除以单项式的法则:把多项式的每一项分别除以单项式,再把所得的商相加,从而可得答案.【详解】解:(1)(2)【点睛】本题考查的是求解一个数的算术平方根与立方根,多项式除以单项式,掌握基础运算是解本题的关键.7、(1);(2)【分析】(1)把原方程化为,再利用立方根的含义解方程即可;(2)直接利用平方根的含义把原方程化为或,再解两个一次方程即可.【详解】解:(1) 解得: (2)或 解得:【点睛】本题考查的是利用立方根的含义

13、与平方根的含义解方程,掌握“立方根与平方根的含义”是解本题的关键.8、(1);(2)1+;(3)x=0,1,3,4【分析】(1)根据定义即可求出答案(2)根据题意给出的变形方法即可求出答案(3)先将分式化为真分式与整式的和,然后根据题意即可求出x的值【详解】解:(1)根据题意,是一个假分式;故答案为:(答案不唯一) (2); 故答案为:;(3),x2=1或x2=2,x=0,1,3,4;【点睛】本题考查学生的阅读能力,解题的关键是正确理解真假分式的定义,本题属于基础题型9、(1);(2)【分析】(1)先根据立方根、算术平方根和零指数幂的意义化简,再根据有理数的运算法则计算;(2)先根据立方根和算术平方根的意义化简,再根据有理数的运算法则计算【详解】(1)原式,;(2)原式,【点睛】此题考查了实数的运算,熟练掌握立方根和算术平方根的意义是解本题的关键10、【分析】利用零指数幂的意义、绝对值的意义、立方根的意义计算即可.【详解】解:原式=【点睛】此题考查了实数的混合运算,掌握相应的运算法则和运算顺序是解答此题的关键.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁