《2021-2022学年浙教版初中数学七年级下册第四章因式分解定向测评试题(含解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年浙教版初中数学七年级下册第四章因式分解定向测评试题(含解析).docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初中数学七年级下册第四章因式分解定向测评(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、下列各式从左到右的变形,因式分解正确的是()A.x2+4(x+2)2B.x210x+16(x4)2C.x3xx(x21)D.2xy+6y22y(x+3y)2、下列因式分解正确的是( )A.3p2-3q2=(3p+3q)(p-q)B.m4-1=(m2+1)(m2-1)C.2p+2q+1=2(p+q)+1D.m2-4m+4=(m-2)23、下列各式中,不能用完全平方公式分解因式的是()A.x2+2x+1B.1
2、6x2+1C.a2+4ab+4b2D.4、下列关于2300+(2)301的计算结果正确的是()A.2300+(2)301230023012300223002300B.2300+(2)3012300230121C.2300+(2)301(2)300+(2)301(2)601D.2300+(2)3012300+230126015、下列因式分解正确的是()A.2p+2q+12(p+q)+1B.m24m+4(m2)2C.3p23q2(3p+3q)(pq)D.m41(m+1)(m1)6、下列各式中,能用完全平方公式因式分解的是( )A.B.C.D.7、在下列从左到右的变形中,不是因式分解的是()A.x2
3、xx(x1)B.x2+3x1x(x+3)1C.x2y2(x+y)(xy)D.x2+2x+1(x+1)28、小南是一位密码编译爱好者,在他的密码手册中有这样一条信息:x1,ab,3,x2+1,a,x+1分别对应下列六个字:化,爱,我,数,学,新,现将3a(x21)3b(x21)因式分解,结果呈现的密码信息可能是()A.我爱学B.爱新化C.我爱新化D.新化数学9、已知,那么的值为( )A.3B.6C.D.10、下列各式中,正确的因式分解是( )A.B.C.D.11、若多项式x2mx+n可因式分解为(x+3)(x4).其中m,n均为整数,则mn的值是( )A.13B.11C.9D.712、下列各式由
4、左到右的变形中,属于因式分解的是()A.a2abac=a(a+b+c )B.x2+x+1=(x+1)2xC.(x+2)(x1)=x2+x2D.a2+b2=(a+b)22ab13、把多项式x2+mx+35进行因式分解为(x5)(x+7),则m的值是()A.2B.2C.12D.1214、下列因式分解结果正确的是( )A.B.C.D.15、对于有理数a,b,c,有(a+100)b(a+100)c,下列说法正确的是()A.若a100,则bc0B.若a100,则bc1C.若bc,则a+bcD.若a100,则abc二、填空题(10小题,每小题4分,共计40分)1、分解因式:x2y6xy9y_2、分解因式:
5、3x2y12xy2_3、因式分解:2a2-4a-6=_4、已知,则_5、分解因式:_6、若a+b2,a2b210,则2021a+b的值是 _7、若,则多项式的值为_8、因式分解:_9、若,则代数式的值等于_10、利用平方差公式计算的结果为_三、解答题(3小题,每小题5分,共计15分)1、如果一个正整数的各位数字都相同,我们称这样的数为“同花数”,比如:,对任意一个三位数,如果满足各数位上的数字互不相同,且都不为零,那么称这个数为“异花数”将一个“异花数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和记为如,对调百位与十位上的数字得到,对调百位与个位上的数字得到,对调
6、十位与个位上的数字得到这三个新三位数的和,是一个“同花数”(1)计算:,并判断它们是否为“同花数”;(2)若是“异花数”,证明:等于的各数位上的数字之和的倍;(2)若“数”(中、都是正整数,),且为最大的三位“同花数”,求的值2、因式分解:3、因式分解:x316x-参考答案-一、单选题1、D【分析】根据因式分解的方法解答即可.【详解】解:A、x2+4(x+2)2,因式分解错误,故此选项不符合题意;B、x2-10x+16(x-4)2,因式分解错误,故此选项不符合题意;C、x3-x=x(x2-1)=x(x+1)(x-1),因式分解不彻底,故此选项不符合题意;D、2xy+6y2=2y(x+3y),因
7、式分解正确,故此选项符合题意;故选:D.【点睛】本题考查了因式分解的方法,明确因式分解的结果应是整式的积的形式.运用提公因式法分解因式时,在提取公因式后,不要漏掉另一个因式中商是1的项.2、D【分析】利用提取公因式法、平方差公式和完全平方公式法分别因式分解分析得出答案.【详解】解:选项A:3p23q23(p2q2)3(pq)(pq),不符合题意;选项B:m41(m21)(m21)m41(m21)(m1)(m1),不符合题意;选项C:2p2q1不能进行因式分解,不符合题意;选项D:m24m4(m2)2,符合题意.故选:D.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解
8、本题的关键.3、B【分析】根据完全平方公式的结构特征逐项进行判断即可.【详解】解:A.x2+2x+1(x+1)2,因此选项A不符合题意;B.16x2+1在实数范围内不能进行因式分解,因此选项B符合题意;C.a2+4ab+4b2(a+2b)2,因此选项C不符合题意;D.x2x+(x)2,因此选项D不符合题意;故选:B.【点睛】此题考查了用完全平方公式进行因式分解,熟练掌握完全平方公式是解题的关键.4、A【分析】直接利用积的乘方运算法则将原式变形,再利用提取公因式法分解因式计算得出答案.【详解】2300+(2)301230023012300223002300.故选:A.【点睛】此题主要考查了提取公
9、因式法分解因式以及有理数的混合运算,正确将原式变形是解题关键.5、B【分析】利用提取公因式法、平方差公式和完全平方公式法分别因式分解分析得出答案.【详解】解:A、2p+2q+1不能进行因式分解,不符合题意;B、m2-4m+4=(m-2)2,符合题意;C、3p2-3q2=3(p2-q2)=3(p+q)(p-q),不符合题意;D、m4-1=(m2+1)(m2-1)=m4-1=(m2+1)(m+1)(m-1),不符合题意;故选择:B【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.6、C【分析】根据完全平方公式的特点判断即可;【详解】不能用完全平方公式,故A不符合
10、题意;不能用完全平方公式,故B不符合题意;,能用完全平方公式,故C符合题意;不能用完全平方公式,故D不符合题意;故答案选C.【点睛】本题主要考查了因式分解公式法的判断,准确判断是解题的关键.7、B【分析】根据因式分解的定义,逐项分析即可,因式分解指的是把一个多项式分解为几个整式的积的形式.【详解】A. x2xx(x1),是因式分解,故该选项不符合题意; B. x2+3x1x(x+3)1,不是因式分解,故该选项符合题意;C. x2y2(x+y)(xy),是因式分解,故该选项不符合题意; D. x2+2x+1(x+1)2,是因式分解,故该选项不符合题意;故选B【点睛】本题考查了因式分解的定义,掌握
11、因式分解的定义是解题的关键.8、C【分析】把所给的式子运用提公因式和平方差公式进行因式分解,查看对应的字即可得出答案.【详解】解:,x1,ab,3,x2+1,a,x+1分别对应下列六个字:化,爱,我,数,学,新,结果呈现的密码信息可能是:我爱新化,故选:C.【点睛】本题考查因式分解,解题的关键是熟练掌握提公因式法和套用平方差公式.9、D【分析】根据完全平方公式求出,再把原式因式分解后可代入求值.【详解】解:因为,所以,所以故选:D【点睛】考核知识点:因式分解的应用.灵活应用完全平方公式进行变形是解题的关键.10、B【分析】直接利用公式法以及提取公因式法分解因式,进而判断得出答案.【详解】解:.
12、,故此选项不合题意;.,故此选项符合题意;.,故此选项不合题意;.,故此选项不合题意;故选:.【点睛】本题考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.11、A【分析】根据多项式与多项式的乘法法则化简(x+3)(x4),再与式x2mx+n比较求出m,n的值,代入mn计算即可.【详解】解:(x+3)(x4)=x2-4x+3x-12=x2-x-12,x2mx+n= x2-x-12,m=1,n=-12,mn=1+12=13.故选A.【点睛】本题考查了因式分解,以及多项式与多项式的乘法计算,熟练掌握因式分解与乘法运算是互为逆运算的关系是解答本题的关键.12、A【分析】根据因式分解是
13、把一个多项式转化成几个整式的积的形式,可得答案;【详解】解:A、把一个多项式转化成了几个整式的积,故A符合题意;、没把一个多项式转化成几个整式积,故不符合题意;、是整式的乘法,故C不符合题意;、没把一个多项式转化成几个整式积,故不符合题意;故选:A.【点睛】本题考查了因式分解的意义,解题的关键是掌握因式分解是把一个多项式转化成几个整式积.13、B【分析】根据整式乘法法则进行计算(x5)(x+7)的结果,然后根据多项式相等进行对号入座.【详解】解:(x5)(x+7),故选:B.【点睛】此题主要考查了多项式的乘法法则以及多项式相等的条件,即两个多项式相等,则它们同次项的系数相等.14、C【分析】根
14、据提公因式法、平方差公式以及十字相乘法进行解答.【详解】解:A、原式x(x4),故本选项不符合题意;B、原式(2x+y)(2xy),故本选项不符合题意;C、原式(x+1)2,故本选项符合题意;D、原式(x+1)(x6),故本选项不符合题意,故选:C.【点睛】本题主要考查了提公因式法、平方差公式以及十字相乘法因式分解,属于基础题.15、A【分析】将等式移项,然后提取公因式化简,根据乘法等式的性质,求解即可得.【详解】解:,或,即:或,A选项中,若,则正确;其他三个选项均不能得出,故选:A.【点睛】题目主要考查利用因式分解化简等式,熟练掌握因式分解的方法是解题关键.二、填空题1、【分析】根据因式分
15、解的方法求解即可.分解因式的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.【详解】解:x2y6xy9y故答案为:.【点睛】此题考查了分解因式,解题的关键是熟练掌握分解因式的方法.分解因式的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.2、【分析】根据提公因式法因式分解即可.【详解】3x2y12xy2故答案为:【点睛】本题考查了提公因式法因式分解,掌握提公因式法因式分解是解题的关键.3、2(a-3)(a+1)a+1)(a-3)【分析】提取公因式2,再用十字相乘法分解因式即可.【详解】解:2a24a62(a22a3)2(a-3)(a+1)故答案为:2(a-3)(
16、a+1)【点睛】本题考查了本题考查了提公因式法与十字相乘法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说如果可以先提取公因式的要先提取公因式,再考虑运用公式法或十字相乘法分解因式,分解因式要彻底是解题关键.4、【分析】先将进行因式分解,然后根据已知条件,即可求解.【详解】解:,.故答案为:.【点睛】本题主要考查了平方差公式的应用,熟练掌握是解题的关键.5、【分析】根据提公因式因式分解求解即可.【详解】解:,故答案为:.【点睛】本题考查了提公因式法因式分解,正确找出公因式是解本题的关键.6、2026【分析】利用平方差公式求得ab,将ab代入2021a+b2021(ab)即可.【详解
17、】解:a+b2,a2b210,a2b2(a+b)(ab)2(ab)10,ab5,2021a+b2021(ab)2021(5)2026,故答案为:2026.【点睛】本题主要考查了用平方差公式进行因式分解,解题的关键是利用平方差公式求得ab,牢记平方差公式 .7、3【分析】将多项式多项式a2+b2+c2abbcac分解成(ab)2+(ac)2+(bc)2,再把a,b,c代入可求.【详解】解:;a2+b2+c2abbcac(2a2+2b2+2c22ab2ac2bc)(ab)2+(ac)2+(bc)2,a2+b2+c2abbcac(1+4+1)3;故答案为:3.【点睛】本题考查了因式分解的应用,关键是
18、将多项式配成完全平方形式.8、【分析】直接提取公因式整理即可.【详解】解:,故答案是:.【点睛】本题考查了提取公因式因式分解,解题的关键是找准公因式.9、4【分析】直接利用已知代数式将原式得出x+y=2,再将原式变形把数据代入求出答案.【详解】解:x+y-2=0,x+y=2,则代数式x2+4y-y2=(x+y)(x-y)+4y=2(x-y)+4y=2(x+y)=4.故答案为:4.【点睛】此题主要考查了公式法的应用,正确将原式变形是解题关键.10、1010【分析】把分子利用平方差公式分解因式,然后约分化简.【详解】解:原式,故答案为:1010.【点睛】本题考查了利用平方差公式进行因式分解,熟练掌
19、握a2-b2=(+b) (a-b)是解答本题的关键.三、解答题1、(1)是同花数;不是同花数;(2)见解析;(3)为162或153或135或126【分析】(1)由“同花数”定义,计算即可得到答案;(2)百位数的表示方法;(2)由“异花数”的定义,为最大的三位“称心数”得且,计算的值为162或153或135或126.【详解】解:(1),是同花数;,不是同花数;(2)若是“异花数”,(其中均为小于10的正整数),等于的各数位上的数字之和的;()异花数” ,又,为正整数),为最大的三位“同花数”,且,、取值如下:或或或,由上可知符合条件三位“异花数”为162或153或135或126.【点睛】本题考查了新定义问题,解题的关键是读懂新定义“同花数”和“异花数”.2、【分析】根据平方差公式“”进行解答即可得.【详解】解:原式=【点睛】本题考查了因式分解,解题的关键是掌握平方差公式.3、x(x+4)(x-4).【分析】原式提取x,再利用平方差公式继续分解即可.【详解】解:x316x=x(x2-16)=x(x+4)(x-4).【点睛】本题考查了提公因式与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.