《2021-2022学年最新北师大版八年级数学下册第一章三角形的证明综合测评试卷(含答案详解).docx》由会员分享,可在线阅读,更多相关《2021-2022学年最新北师大版八年级数学下册第一章三角形的证明综合测评试卷(含答案详解).docx(31页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版八年级数学下册第一章三角形的证明综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、等腰三角形周长为17cm,其中一边长为5cm,则该等腰三角形的腰长为()A6cmB7cmC5cm或6cmD5
2、cm2、如图,ABC中,ABC与ACB的平分线交于点F,过点F作DEBC交AB于点D,交AC于点E,那么下列结论:BDF是等腰三角形;DEBD+CE;若A50,则BFC115;DFEF其中正确的有( )A1个B2个C3个D4个3、如图,AD是ABC的角平分线,作AD的垂直平分线EF交BC的延长线于点F,连接AF下列结论:;其中命题一定成立的有( )A1个B2个C3个D4个4、如图,在ABC中,分别以点A和点B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和点M,作直线MN交AB于点D,交AC于点E,连接CD若AC6,AB8,BC4,则BEC的周长( )A10B12C8D145、如图,
3、在ABC中,BAC45,E是AC中点,连接BE,CDBE于点F,CDBE若AD,则BD的长为()A2B2C2D36、有下列说法:轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;等腰三角形一腰上的高与底边的夹角与顶角互余;等腰三角形顶角的平分线是它的对称轴;等腰三角形两腰上的中线相等其中正确的说法有( )个A1B2C3D47、如果三角形一边上的中线等于这条边的一半,那么这个三角形一定是( )A锐角三角形B直角三角形C钝角三角形D等腰三角形8、如图,在ABC中,是的垂直平分线,则的周长为13cm,则ABC的周长是( )A16cmB17cmC18cmD19cm9、如图,ABC中,CAB的角平
4、分线AD交BC于D,于E,且,则BC的长是( )A6cmB4cmC10cmD以上都不对10、如图,在ABC中,ACB=90,CAB=30,AC=63,D为AB上一动点(不与点A重合),AED为等边三角形,过D点作DE的垂线,F为垂线上任意一点,G为EF的中点,则线段BG长的最小值是( )A23B6C33D9第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,将宽为的纸条沿BC折叠,则折叠后重叠部分的面积为_(根号保留)2、在平面直角坐标系中,ABC的顶点A、B、C的坐标分别为(0,3)、(4,0)、(0,0),AB=5,点P为x轴上一点,若使得ABP为等腰三角形,那么
5、点P的坐标除点(,0)外,还可以是_3、如图,在ABC中,的垂直平分线交于点,交于点,的周长为13cm,则ABC的周长_cm4、如图,在ABC中,点D在AB的延长线上,CAB平分线与CB的垂直平分线交于点E,连接BE若ACB28,EBC25,则EBD的度数为 _5、如图,是的平分线,于点,于点,ABC的面积是36,则的长是_三、解答题(5小题,每小题10分,共计50分)1、如图1,直线AB/CD,现想在直线AB、CD之间作一条直线l平行于直线AB、CD,并且使直线l上的点到直线AB、CD之间的距离相等小明做了如下操作:分别作BEF、DFE的平分线交于点G,过点G作直线AB、CD的平行线,过点G
6、分别作直线AB、CD、EF的垂线,垂足分别为M、N、H,此时直线l上的点到直线AB、CD的距离相等(1)试说明:;(2)若,EG=4,直线交于点试问的度数为 ,是 三角形;周长为 ;(3)若点是射线上的一个动点(不包括端点)如图2,连接,将EPF折叠,顶点落在点处,若PEF=58,点刚好落在其中的一条平行线上,试求的度数2、如图1,ABC中,CDAB于D,且BD:AD:CD=2:3:4;(1)试说明ABC是等腰三角形;(2)已知SABC=40cm2,如图2,动点M从点B出发以每秒1cm的速度沿线段BA向点A运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都
7、停止设点M运动的时间为(秒)若DMN的边与BC平行,求t的值;在点N运动的过程中,能否成为等腰三角形?若能,求出的值;若不能,请说明理由3、如图,把长方形纸片OABC放入直角坐标系中,使OA,OC分别落在x轴、y轴的正半轴上,连接AC,将ABC沿AC翻折,点B落在点D,CD交x轴于点E,已知CB8,AB4(1)求AC所在直线的函数关系式;(2)求点E的坐标和ACE的面积;(3)坐标轴上是否存在点P(不与A、C、E重合),使得CEP的面积与ACE的面积相等,若存在请直接写出点P的坐标4、数学课上,王老师布置如下任务:如图,已知MAN45,点B是射线AM上的一个定点,在射线AN上求作点C,使ACB
8、2A下面是小路设计的尺规作图过程作法:作线段AB的垂直平分线l,直线l交射线AN于点D;以点B为圆心,BD长为半径作弧,交射线AN于另一点C,则点C即为所求根据小路设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明:证明:连接BD,BC,直线l为线段AB的垂直平分线,DA ,( )(填推理的依据)AABD,BDCAABD2ABCBD,ACB ,( )(填推理的依据)ACB2A5、如图,ABAD,ACAE,BCDE,点E在BC上(1)求证:EACBAD;(2)若EAC42,求DEB的度数-参考答案-一、单选题1、C【分析】分为两种情况:5cm是等腰三角形的
9、腰或5cm是等腰三角形的底边,然后进一步根据三角形的三边关系进行分析能否构成三角形【详解】若5cm为等腰三角形的腰长,则底边长为17557(cm),5+57,符合三角形的三边关系;若5cm为等腰三角形的底边,则腰长为(175)26(cm),此时三角形的三边长分别为6cm,6cm,5cm,符合三角形的三边关系;该等腰三角形的腰长为5cm或6cm,故选:C【点睛】此题考查了等腰三角形的两腰相等的性质,同时注意三角形的三边关系:三角形任意两边之和大于第三边2、C【分析】根据平行线的性质和角平分线的定义以及等腰三角形的判定和性质逐个判定即可解答【详解】解:BF是AB的角平分线,DBFCBF,DEBC,
10、DFBCBF,DBFDFB,BDDF,BDF是等腰三角形;故正确;同理,EFCE,DEDF+EFBD+CE,故正确;A50,ABC+ACB130,BF平分ABC,CF平分ACB,FBC+FCB(ABC+ACB)65,BFC18065115,故正确;当ABC为等腰三角形时,DFEF,但ABC不一定是等腰三角形,DF不一定等于EF,故错误故选:C【点睛】本题主要考查等腰三角形的性质、角平分线的定义及平行线的性质等知识点,根据两直线平行、内错角相等以及等角对等边来判定等腰三角形是解答本题的关键3、C【分析】根据垂直平分线的性质和线段垂直平分线的性质即可判断;根据BAF=BAD+DAF,ACF=DAC
11、+ADF,即可判断;根据BAF不一定为90,则ACF不一定为90,即可判断【详解】解:EF是线段AD的垂直平分线,AF=DF,故正确;ADF=DAF,过点D分别作DHAB于H,DGAC于G,AD平分BAC,DH=DG,BAD=CAD,故正确;BAF=BAD+DAF,ACF=DAC+ADF,BAF=ACF,故正确;BAF不一定为90,ACF不一定为90,AF与BC不一定垂直,故错误,故选C【点睛】本题主要考擦了线段垂直平分线的性质,角平分线的性质,熟知角平分线和线段垂直平分线的性质是解题的关键4、A【分析】由垂直平分线的性质得,故的周长为,计算即可得出答案【详解】由题可知:为的垂直平分线,故选:
12、A【点睛】本题考查垂直平分线的性质,掌握垂直平分线上的点到线段两端的距离相等是解题的关键5、B【分析】过点C作CNAB于点N,连接ED,EN,利用SAS证明DCEBEN,可得EDNB,CEDENB135,得ADE是等腰直角三角形,可得ADDNBN,进而可得结果【详解】解:如图,过点C作CNAB于点N,连接EN,CNA90,BAC45,NCAA45,ANCN,点E是AC的中点,ANECNE45,CENAEN90,CEF+FEN90,CDBE,CFE90,CEF+FCE90,DCEBEN,在DCE和BEN中,DCEBEN(SAS),EDNB,CEDENB135,AED45AACN,ADDE,AEC
13、E,AE=EN,ADDN,ADDNBN,BD2AD2故选B【点睛】本题主要考查了全等三角形的性质与判定,等腰直角三角形的性质与判定,解题的关键在于能够正确作出辅助线,构造全等三角形求解6、B【分析】根据轴对称的性质,轴对称图形的概念,等腰三角形的性质判断即可【详解】解:轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线,说法正确;等腰三角形一腰上的高与底边的夹角与底角互余,原说法错误;等腰三角形的顶角平分线在它的对称轴上,原说法错误;等腰三角形两腰上的中线相等,说法正确综上,正确的有,共2个,故选:B【点睛】本题考查了轴对称的性质及等腰三角形的性质,掌握轴对称的性质,轴对称图形的概念,等腰
14、三角形的性质是解题的关键7、B【分析】根据题意画出图形,利用等腰三角形的性质及三角形内角和定理即可得到答案【详解】如图,在ABC中,CD是边AB上的中线AD=CD=BDA=DCA,B=DCBA+ACB+B=180 A+DCA+DCB+B=180即2A+2B=180A+B=90ACB=90ABC是直角三角形故选:B【点睛】本题考查了等腰三角形的性质及三角形内角和定理,熟练运用这两个知识是关键8、D【分析】根据题意,得AB+BD+AD= AB+BD+DC=AB+BC=13,AC=2AE=6,从而得到AB+AC+BC=19【详解】是的垂直平分线,AE=EC=3,AD=DC,AC=2AE=6,的周长为
15、13cm,AB+BD+AD= AB+BD+DC=AB+BC=13(cm),AB+AC+BC=19(cm)故选D【点睛】本题考查了线段的垂直平分线性质,等量代换,熟练掌握线段垂直平分线的性质是解题的关键9、A【分析】由角平分线的性质得CD=DE=2,等量代换后求出BC的长【详解】解:AD平分CAB,DEAB于E,C=90,CD=DE=2,又,BC=BD+CD=4+2=6(cm);故选:A【点睛】本题考查角平分线的性质的应用,熟练掌握角平分线的性质在实际问题中的应用,等量代换是解题关键10、B【分析】连接,设交于点,先判定为线段的垂直平分线,再判定,然后由全等三角形的性质可得答案【详解】解:如图,
16、连接,设交于点,为的中点,点在线段的垂直平分线上,为等边三角形,点在线段的垂直平分线上,为线段的垂直平分线,点在射线上,当时,的值最小,如图所示,设点为垂足,则在和中,解得:,故选:B【点睛】本题考查了全等三角形的判定与性质、线段垂直平分线的判定与性质,数形结合并明确相关性质及定理是解题的关键二、填空题1、【分析】利用折叠的性质可得出ABC是等腰三角形,有AC=AB;过点C作CGAB于点G,则得CG=2,且CGA为等腰直角三角形,从而可求得AC的值,则可求得面积【详解】如图,由折叠性质得:ECB=ACBDEABDCA=CAB=45DCA+ACB+ECB=180CAB+ACB+ABC=180AB
17、C=ACB=67.5AB=AC即ABC是等腰三角形过点C作CGAB于点G,则CG=2,且ACG=CAB=45CGA为等腰直角三角形AG=CG=2 由勾股定理得:重叠部分ABC的面积为故答案为:【点睛】本题考查了折叠的性质,等腰三角形的判定,勾股定理等知识,判定ABC是等腰三角形是本题的关键2、(,0)、(,0)、(9,0)【分析】先表示出PB=|a-4|,PB2=a2+9,AB=5,再分三种情况当PB=AB时当PA=PB时,当PA=AB时,讨论计算即可【详解】设P(a,0),A(0,3),B(4,0),PB=|a-4|,PA2=a2+9,AB=5,ABP是等腰三角形,当PB=AB时,|a-4|
18、=5,a=-1或9,P(-1,0)或(9,0),当PA=PB时,(a-4)2=a2+9,a=,P(,0),当PA=AB时,a2+9=25,a=4(舍)或a=-4,P(-4,0)即:满足条件的点P的坐标为(-1,0)、(-4,0)、(9,0)【点睛】本题考查了平面直角坐标系中点的坐标规律,等腰三角形的性质,分类讨论和用方程思想解决问题是解本题的关键3、22【分析】根据“的垂直平分线交于,交于”可知DE是AC的垂直平分线,利用中垂线的性质可得DC=DA,由的周长为AB+BD+AD= 13cm,可知AB+BC=12,再求AC=AE+CE=4.5+4.5=9cm,从而可以得到ABC的周长【详解】解:D
19、E是AC的垂直平分线,DA=DC,AE=CE=4.5cmAC=AE+CE=4.5+4.5=9cm,的周长为AB+BD+AD=AB+BD+DC=AB+BC=13cm,ABC的周长为:AB+BC+AC=13+9=22cm故答案为22【点睛】本题考查的是线段垂直平分线的性质,知道线段垂直平分线上的点到线段两端的距离相等,将ABD的周长转化为AB+BC是解题的关键4、53【分析】过点E作EMAC,ENAD,垂足分别为M,N,证明RtECMRtEBN,进而可得结果【详解】解答:解:如图,过点E作EMAC,ENAD,垂足分别为M,N,连接E C,AE是CAB平分线,EMEN,E是CB的垂直平分线上的点,E
20、CEB,ECBEBC25,在RtECM和RtEBN中,RtECMRtEBN(HL),EBNECMACB+ECB28+2553故答案为:53【点睛】本题考查的是线段垂直平分线的判定、等腰三角形的性质以及三角形内角和定理,掌握到线段的两个端点的距离相等的点在垂直平分线上是解题的关键5、#【分析】根据角平分线性质,得出DE=DF,利用SABC=SABD+SBCD得出,求解即可【详解】解:是的平分线,DE=DF,SABC=SABD+SBCD=,解得故答案为【点睛】本题考查角平分线性质,三角形面积,一元一次方程,掌握角平分线性质,三角形面积,一元一次方程,关键是利用SABC=SABD+SBCD列出方程三
21、、解答题1、(1)证明见详解;(2);等边,12;(3)满足条件的的值为或【分析】(1)根据角平分线的性质:角平分线上的点到角的两边距离相等,即可证明;(2)根据平行线的性质:两直线平行,同旁内角互补,可得,根据角平分线的性质及各角之间的关系,可得;再由平行直线的性质可得,得出EKG是等边三角形,根据周长的公式即可得出三角形周长;(3)分两种情况讨论:当点Q落在AB上时,根据折叠的性质可得:,结合图形即可得出;当点Q落在CD上时,根据平行线及角平分线的性质即可得出【详解】解:(1)EG平分,FG平分,;(2),EG平分,FG平分,;直线,EKG是等边三角形,EKG的周长为12,故答案为:;等边
22、,12;(3)当点Q落在AB上时,如图所示:将EPF折叠,顶点E落在点Q处,;当点Q落在CD上时,如图所示:,综上可得,满足条件的的值为或【点睛】题目主要考查角平分线及平行线的性质,图形折叠的性质,理解题意,熟练掌握角平分线及平行线的性质是解题关键2、(1)证明见解析;(2)t值为5或6;点N运动的时间为6s,或时,为等腰三角形.【分析】(1)设BD2x,AD3x,CD4x,则AB5x,由勾股定理求出AC,即可得出结论;(2)由ABC的面积求出BD、AD、CD、AC;再分当MNBC时,AMAN和当DNBC时,ADAN两种情况得出方程,解方程即可;分三种情况:AD=AN;DA=DN;和ND=NA
23、,三种情况讨论即可【详解】解:(1)设BD2x,AD3x,CD4x,则AB5x,在RtACD中,AC5x,ABAC,ABC是等腰三角形;(2)SABC5x4x40cm2,而x0,x2cm,则BD4cm,AD6cm,CD8cm,AC10cm当MNBC时,AMAN,即10tt,此时t5,当DNBC时,ADAN,此时t6,综上所述,若DMN的边与BC平行时,t值为5或6;能成为等腰三角形,分三种情况:()若AD=AN=6,如图:则t=6s;()若DA=DN,如图:过点D作于点H,则AH=NH,由,得,解得,在中,;()若ND=NA,如图:过点N作于点Q,则AQ=DQ=3,;综上,点N运动的时间为6s
24、,或时,为等腰三角形.【点睛】此题主要考查了等腰三角形的性质,平行线的性质,三角形的面积公式,勾股定理,解本题的关键是熟练掌握方程的思想方法和分类讨论思想3、(1)y;(2)E(3,0),10;(3)P1(-2,0),P2(0,),P3(0,-)【分析】(1)先求出A、C的坐标,然后用待定系数法求解即可;(2)先证明CEAE;设CEAEx,则OE8x,在直角OCE中,OC2OE2CE2,则,求出x得到OE的长即可求解;(3)分P在x轴上和y轴上两种情况讨论求解即可【详解】解:(1)OA,OC分别落在x轴、y轴的正半轴上,CB8,AB4 A(8,0)、C(0,4), 设直线AC解析式为ykxb,
25、解得:,AC所在直线的函数关系式为y; (2)长方形OABC中,BCOA,BCACAO,又BCAACD,ACDCAO,CEAE;设CEAEx,则OE8x,在直角OCE中,OC2OE2CE2,则,解得:x5;则OE853,则E(3,0),SACE5410;(3)如图3-1所示,当P在x轴上时,SCEP=SACE,E点坐标为(3,0),P点坐标为(-2,0)或(8,0)(舍去,与A点重合)如图3-2所示,当P在y轴上时,同理可得,C点坐标为(0,4),P点坐标为(0,)或(0,);综上所述,坐标轴上是在点P(-2,0)或(0,)或(0,)使得CEP的面积与ACE的面积相等【点睛】本题主要考查了求一
26、次函数解析式,三角形面积,坐标与图形,勾股定理与折叠,等腰三角形的性质与判定,平行线的性质等等,解题的关键在于鞥个熟练掌握相关知识进行求解4、(1)见解析;(2)DB;线段垂直平分线上的点到线段两端的距离相等;BDC; 等边对等角【分析】(1)根据题目中的小路的尺规作图过程,直接作图即可(2)根据垂直平分线的性质以及等边对等角进行解答即可【详解】解:(1) 根据题目中的小路的设计步骤,补全的图形如图所示; (2)解:证明:连接BD,BC,直线l为线段AB的垂直平分线,DA DB ,(线段垂直平分线上的点到线段两端的距离相等)(填推理的依据)AABD,BDCAABD2ABCBD,ACBBDC ,
27、(等边对等角)(填推理的依据)ACB2A【点睛】本题主要是考查了尺规作图能力以及垂直平分线和等边对等角的性质,熟练掌握垂直平分线和等边对等角的性质,是解决该题的关键5、(1)见解析;(2)42【分析】(1)利用边边边证得ABCADE,可得BACDAE,即可求证;(2)根据等腰三角形的性质,可得AECC69,再由ABCADE,可得AEDC69, 即可求解【详解】(1)证明:ABAD,ACAE,BCDE,ABCADE BACDAE BACBAEDAEBAE即EACBAD; (2)解:ACAE,EAC=42,AECC (180EAC) (18042)69ABCADE,AEDC69, DEB180AEDC180696942【点睛】本题主要考查了全等三角形的判定和性质,等腰三角形的性质,熟练掌握全等三角形的判定和性质定理,等腰三角形的性质定理是解题的关键