2021-2022学年基础强化京改版八年级数学下册第十五章四边形同步测试试题(含详细解析).docx

上传人:可****阿 文档编号:30719999 上传时间:2022-08-06 格式:DOCX 页数:25 大小:443.53KB
返回 下载 相关 举报
2021-2022学年基础强化京改版八年级数学下册第十五章四边形同步测试试题(含详细解析).docx_第1页
第1页 / 共25页
2021-2022学年基础强化京改版八年级数学下册第十五章四边形同步测试试题(含详细解析).docx_第2页
第2页 / 共25页
点击查看更多>>
资源描述

《2021-2022学年基础强化京改版八年级数学下册第十五章四边形同步测试试题(含详细解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年基础强化京改版八年级数学下册第十五章四边形同步测试试题(含详细解析).docx(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、京改版八年级数学下册第十五章四边形同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法中正确的是( )A从一个八边形的某个顶点出发共有8条对角线B已知C、D为线段AB上两点,若,则C“道路尽可

2、能修直一点”,这是因为“两点确定一条直线”D用两个钉子把木条固定在墙上,用数学的知识解释是“两点之间线段最短”2、如图,在平面直角坐标系中,点A是x轴正半轴上的一个动点,点C是y轴正半轴上的点,于点C已知,点B到原点的最大距离为( )A22B18C14D103、下列图形中,既是轴对称图形又是中心对称图形的是( )ABCD4、如图,在中,点,分别是,上的点,点,分别是,的中点,则的长为( )A4B10C6D85、如图,以O为圆心,长为半径画弧别交于A、B两点,再分别以A、B为圆心,以长为半径画弧,两弧交于点C,分别连接、,则四边形一定是( )A梯形B菱形C矩形D正方形6、下列说法中,不正确的是(

3、 )A四个角都相等的四边形是矩形B对角线互相平分且平分每一组对角的四边形是菱形C正方形的对角线所在的直线是它的对称轴D一组对边相等,另一组对边平行的四边形是平行四边形7、下列图形中,既是轴对称图形又是中心对称图形的是()ABCD8、如图,在平面直角坐标系中,矩形OABC的点A和点C分别落在x轴和y轴正半轴上,AO4,直线l:y3x+2经过点C,将直线l向下平移m个单位,设直线可将矩形OABC的面积平分,则m的值为()A7B6C4D89、已知中,CD是斜边AB上的中线,则的度数是( )ABCD10、如图,在矩形ABCD中,AB=1,BC=2,将其折叠,使AB边落在对角线AC上,得到折痕AE,则点

4、E到点B的距离为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平面直角坐标系内,矩形OABC的顶点A(3,0),C(0,9),点D和点E分别位于线段AC,AB上,将ABC沿DE对折,恰好能使点A和点C重合若x轴上有一点P,使AEP为等腰三角形,则点P的坐标为_2、如图,在长方形ABCD中,在DC上找一点E,沿直线AE把折叠,使D点恰好落在BC上,设这一点为F,若的面积是54,则的面积=_3、一个凸边形的边数与对角线条数的和小于20,且能被5整除,则_4、判断:(1)菱形的对角线互相垂直且相等(_)(2)菱形的对角线把菱形分成四个全等的直角三角形(

5、_)5、一个多边形,每个外角都是,则这个多边形是_边形三、解答题(5小题,每小题10分,共计50分)1、我们知道正多边形的定义是:各边相等,各角也相等的多边形叫做正多边形(1)如图,在各边相等的四边形ABCD中,当ACBD时,四边形ABCD 正四边形;(填“是”或“不是”)(2)如图,在各边相等的五边形ABCDE中,ACCEEBBDDA,求证:五边形ABCDE是正五边形;(3)如图,在各边相等的五边形ABCDE中,减少相等对角线的条数也能判定它是正五边形,问:至少需要几条对角线相等才能判定它是正五边形?请说明理由2、如图,四边形ABCD是平行四边形,延长DA,BC,使得AECF,连接BE,DF

6、(1)求证:ABECDF;(2)连接BD,若132,ADB22,请直接写出当ABE 时,四边形BFDE是菱形3、如图,的对角线与相交于点O,过点B作BPAC,过点C作CPBD,与相交于点P(1)试判断四边形的形状,并说明理由;(2)若将改为矩形,且,其他条件不变,求四边形的面积;(3)要得到矩形,应满足的条件是_(填上一个即可)4、如图,在矩形中,为对角线(1)用尺规完成以下作图:在上找一点,使,连接,作的平分线交于点;(保留作图痕迹,不写作法)(2)在(1)所作的图形中,若,求的度数5、如图:在中,点为的中点,点为直线上的动点(不与点,重合),连接,以为边在的上方作等边,连接(1)是_三角形

7、;(2)如图1,当点在边上时,运用(1)中的结论证明;(3)如图2,当点在的延长线上时,(2)中的结论是否依然成立?若成立,请加以证明,若不成立,请说明理由-参考答案-一、单选题1、B【分析】根据n边形的某个顶点出发共有(n-3)条对角线即可判断A;根据线段的和差即可判断B;根据两点之间,线段最短即可判断C;根据两点确定一条直线即可判断D【详解】解:A、从一个八边形的某个顶点出发共有5条对角线,说法错误,不符合题意;B、已知C、D为线段AB上两点,若AC=BD,则AD=BC,说法正确,符合题意;C、“道路尽可能修直一点”,这是因为“两点之间,线段最短”,说法错误,不符合题意;D、用两个钉子把木

8、条固定在墙上,用数学的知识解释是“两点确定一条直线”,说法错误,不符合题意;故选B【点睛】本题主要考查了多边形对角线问题,线段的和差,两点之间,线段最短,两点确定一条直线等等,熟知相关知识是解题的关键2、B【分析】首先取AC的中点E,连接BE,OE,OB,可求得OE与BE的长,然后由三角形三边关系,求得点B到原点的最大距离【详解】解:取AC的中点E,连接BE,OE,OB,AOC90,AC16,OECEAC8,BCAC,BC6,BE10,若点O,E,B不在一条直线上,则OBOE+BE18若点O,E,B在一条直线上,则OBOE+BE18,当O,E,B三点在一条直线上时,OB取得最大值,最大值为18

9、故选:B【点睛】此题考查了直角三角形斜边上的中线的性质以及三角形三边关系此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用3、C【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形【详解】解:A不是轴对称图形,是中心对称图形,故本选项不符合题意;B既不是轴对称图形,又不是中心对称图形,故本选项不符合题意;C既是轴对称图形,又是中心对称图形,故本选项符合题意;D是轴对称图形,不是中心对称图形,

10、故本选项不符合题意故选:C【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合4、B【分析】根据三角形中位线定理得到PD=BF=6,PDBC,根据平行线的性质得到PDA=CBA,同理得到PDQ=90,根据勾股定理计算,得到答案【详解】解:C=90,CAB+CBA=90,点P,D分别是AF,AB的中点,PD=BF=6,PD/BC,PDA=CBA,同理,QD=AE=8,QDB=CAB,PDA+QDB=90,即PDQ=90,PQ=10,故选:B【点睛】本题考查的是三角形中位线定理、勾股定理,掌握

11、三角形的中位线平行于第三边,且等于第三边的一半是解题的关键5、B【分析】根据题意得到,然后根据菱形的判定方法求解即可【详解】解:由题意可得:,四边形是菱形故选:B【点睛】此题考查了菱形的判定,解题的关键是熟练掌握菱形的判定方法菱形的判定定理:四条边都相等四边形是菱形;一组邻边相等的平行四边形是菱形;对角线垂直的平行四边形是菱形6、D【分析】根据矩形的判定,正方形的性质,菱形和平行四边形的判定对各选项分析判断后利用排除法求解【详解】解:A、四个角都相等的四边形是矩形,说法正确;B、正方形的对角线所在的直线是它的对称轴,说法正确;C、对角线互相平分且平分每一组对角的四边形是菱形,说法正确;D、一组

12、对边相等且平行的四边形是平行四边形,原说法错误;故选:D【点睛】本题主要考查特殊平行四边形的判定与性质,熟练掌握特殊平行四边形相关的判定与性质是解答本题的关键7、D【详解】解:A不是轴对称图形,是中心对称图形,故本选项不符合题意;B不是轴对称图形,是中心对称图形,故本选项不符合题意;C是轴对称图形,不是中心对称图形,故本选项符合题意;D既是轴对称图形,又是中心对称图形,故本选项不符合题意故选:D【点睛】本题考查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重

13、合,这个图形叫做轴对称图形轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合8、A【分析】如图所示,连接AC,OB交于点D,先求出C和A的坐标,然后根据矩形的性质得到D是AC的中点,从而求出D点坐标为(2,1),再由当直线经过点D时,可将矩形OABC的面积平分,进行求解即可【详解】解:如图所示,连接AC,OB交于点D,C是直线与y轴的交点,点C的坐标为(0,2),OA=4,A点坐标为(4,0),四边形OABC是矩形,D是AC的中点,D点坐标为(2,1),当直线经过点D时,可将矩形OABC的面积平分,由题意得平移后的直线解析式为,故选A【

14、点睛】本题主要考查了一次函数与几何综合,一次函数的平移,矩形的性质,解题的关键在于能够熟知过矩形中心的直线平分矩形面积9、B【分析】由题意根据三角形的内角和得到A=36,由CD是斜边AB上的中线,得到CD=AD,根据等腰三角形的性质即可得到结论【详解】解:ACB=90,B=54,A=36,CD是斜边AB上的中线,CD=AD,ACD=A=36.故选:B【点睛】本题考查直角三角形的性质与三角形的内角和,熟练掌握直角三角形的性质即直角三角形斜边的中线等于斜边的一半是解题的关键10、C【分析】由于AE是折痕,可得到AB=AF,BE=EF,再求解设BE=x,在RtEFC中利用勾股定理列出方程,通过解方程

15、可得答案【详解】解: 矩形ABCD, 设BE=x, AE为折痕, AB=AF=1,BE=EF=x,AFE=B=90, RtABC中,RtEFC中,EC=2-x, , 解得:, 则点E到点B的距离为: 故选:C【点睛】本题考查了勾股定理和矩形与折叠问题;二次根式的乘法运算,利用对折得到,再利用勾股定理列方程是解本题的关键二、填空题1、(8,0)或(-2,0)-2,0)或(8,0)【分析】由矩形的性质可得BC=OA =3,AB=OC=9,B=90=OAE,由折叠的性质可得AE=CE,由勾股定理可求AE的长,由等腰三角形的性质可求解【详解】解:四边形OABC矩形,且点A(3,0),点C(0,9),B

16、C=OA =3,AB=OC=9,B=90=OAE,将ABC沿DE对折,恰好能使点A与点C重合AE=CE,CE2=BC2+BE2,CE2=9+(9-CE)2,CE=5,AE=5,AEP为等腰三角形,且EAP=90,AE=AP=5,点E坐标(8,0)或(-2,0)故答案为:(8,0)或(-2,0)【点睛】本题考查了翻折变换,等腰三角形的性质,矩形的性质,勾股定理,坐标与图形变化-对称,求出AE的长是本题的关键2、6【分析】根据三角形的面积求出BF,利用勾股定理列式求出AF,再根据翻折变换的性质可得AD=AF,然后求出CF,设DE=x,表示出EF、EC,然后在RtCEF中,利用勾股定理列方程求解和三

17、角形的面积公式解答即可【详解】解:四边形ABCD是矩形AB=CD=9,BC=ADABBF54,BF=12 在RtABF中,AB=9,BF=12,由勾股定理得, BC=AD=AF=15,CF=BC-BF=15-12=3设DE=x,则CE=9-x,EF=DE=x则x2=(9-x)2+32,解得,x=5DE=5 EC=DC-DE=9-5=4 FCE的面积=43=6【点睛】本题考查了翻折变换的性质,矩形的性质,三角形的面积,勾股定理,熟记各性质并利用勾股定理列出方程是解题的关键3、5或6【分析】先把多边形的边数与对角线的条数之和因式分解,列不等式得出,两个连续整式的积小于40根据能被5整除,当n=5,

18、能被5整除,当n-1=5,n=6,能被5整除即可 【详解】解:20,能被5整除,当n=5,能被5整除,当n-1=5,n=6,能被5整除,故答案为5或6【点睛】本题考查因式分解,熟记n边形对角线条数的公式,列不等式,根据条件进行讨论是解题关键4、 【分析】根据菱形的性质,即可求解【详解】解:(1)菱形的对角线互相垂直且平分;(2)菱形的对角线把菱形分成四个全等的直角三角形故答案为:(1);(2)【点睛】本题主要考查了菱形的性质,熟练掌握菱形的对角线互相垂直且平分是解题的关键5、六6【分析】根据正多边形的性质,边数等于360除以每一个外角的度数【详解】一个多边形的每个外角都是60,n=36060=

19、6,故答案为:六【点睛】本题主要考查了利用多边形的外角和,熟练掌握多边形外角和360是解决问题的关键三、解答题1、(1)是;(2)见解析;(3)至少需要3条对角线相等才能判定它是正五边形,见解析【分析】(1)根据对角线相等的菱形是正方形,证明即可;(2)由SSS证明ABCBCDCDEDEAEAB得出ABC=BCD=CDE=DEA=EAB,即可得出结论;(3)由SSS证明ABEBCADEC得出BAE=CBA=EDC,AEB=ABE=BAC=BCA=DCE=DEC,由SSS证明ACEBEC得出ACE=CEB,CEA=CAE=EBC=ECB,由四边形ABCE内角和为360得出ABC+ECB=180,

20、证出ABCE,由平行线的性质得出ABE=BEC,BAC=ACE,证出BAE=3ABE,同理:CBA=D=AED=BCD=3ABE=BAE,即可得出结论;【详解】(1)解:结论:四边形ABCD是正四边形理由:ABBCCDDA,四边形ABCD是菱形,ACBD,四边形ABCD是正方形四边形ABCD是正四边形故答案为:是(2)证明:凸五边形ABCDE的各条边都相等,ABBCCDDEEA,在ABC、BCD、CDE、DEA、EAB中,ABCBCDCDEDEAEAB(SSS),ABCBCDCDEDEAEAB,五边形ABCDE是正五边形;(3)解:结论:至少需要3条对角线相等才能判定它是正五边形若ACBECE

21、,五边形ABCDE是正五边形,理由如下:在ABE、BCA和DEC中,ABEBCADEC(SSS),BAECBAEDC,AEBABEBACBCADCEDEC,在ACE和BEC中,ACEBEC(SSS),ACECEB,CEACAEEBCECB,四边形ABCE内角和为360,ABC+ECB180,ABCE,ABEBEC,BACACE,CAECEA2ABE,BAE3ABE,同理:CBADAEDBCD3ABEBAE,五边形ABCDE是正五边形;【点睛】本题是四边形综合题目,考查了正多边形的判定、全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理等知识;本题综合性强,有一定难度,证明三角形全等是解

22、题的关键2、(1)见解析;(2)12【分析】(1)由“SAS”可证ABECDF;(2)通过证明BE=DE,可得结论【详解】证明:(1)四边形ABCD是平行四边形,AB=CD,BAD=BCD,1=DCF,在ABE和CDF中,ABECDF(SAS);(2)当ABE=10时,四边形BFDE是菱形,理由如下:ABECDF,BE=DF,AE=CF,四边形ABCD是平行四边形,AD=BC,AD+AE=BC+CF,BF=DE,四边形BFDE是平行四边形,1=32,ADB=22,ABD=1-ADB=10,ABE=12,DBE=22,DBE=ADB=22,BE=DE,平行四边形BFDE是菱形,故答案为:12【点

23、睛】本题考查了菱形的判定,平行四边形的判定和性质,全等三角形的判定和性质,掌握菱形的判定是解题的关键3、(1)平行四边形,理由见解析;(2)四边形的面积为24;(3)AB=BC或ACBD等(答案不唯一)【分析】(1)利用平行四边形的判定:两组对边分别平行的四边形是平行四边形,即可证明(2)利用矩形的性质,得到对角线互相平分,进而证明四边形是菱形,分别求出菱形的对角线长度,利用对角线乘积的一半,求解面积即可(3)添加的条件只要可以证明即可得到矩形【详解】解:(1)四边形BPCO是平行四边形,BPAC,CPBD,四边形BPCO是平行四边形 (2)连接OP 四边形ABCD是矩形,OB=BD,OC=A

24、C,AC=BD,ABC=90,OB=OC 又四边形BPCO是平行四边形,BPCO是菱形 OPBC.又ABBC,OPAB.又ACBP,四边形是平行四边形,OP=AB=6. S菱形BPCO= (3)AB=BC或ACBD等(答案不唯一)当AB=BC时,为菱形,此时有:,利用含有的平行四边形为矩形,即可得到矩形,当ACBD时,利用含有的平行四边形为矩形,即可得到矩形【点睛】本题主要是考查了平行四边形、矩形和菱形的判定和性质,熟练掌握特殊四边形的判定和性质,是求解该类问题的关键4、(1)图形见解析;(2)【分析】(1)利用尺规根据题意即可完成作图;(2)结合(1)根据等腰三角形的性质和三角形外角定理可得

25、的度数【详解】(1)如图,点E和点F即为所求;(2),ABD=68,AEB=AEB=68EAB=180-68-68=44,EAD=90-44=46,AF平分DAE,FAE=DAE=23,【点睛】题考查了尺规作图-作角平分线,矩形的性质,熟练掌握5种基本作图是解决此类问题的关键5、(1)等边;(2)见解析;(3)成立,理由见解析【分析】(1)根据含30度角的直角三角形的性质,直角三角形斜边上的中线等于斜边的一半可证明,即可证明OBC是等边三角形;(2)先证明,即可利用SAS证明,得到;(3)先证明,即可利用SAS证明,得到【详解】(1)ACB=90,A=30,O是AB的中点,OBC是等边三角形,故答案为:等边;(2)由(1)可知,是等边三角形,即,在和中,;(3)成立,证明:由(1)可知,是等边三角形,即,在和中,【点睛】本题主要考查了等边三角形的性质与判定,全等三角形的性质与判定,含30度角的直角三角形的性质,直角三角形斜边上的中线,熟练掌握等边三角形的性质与判定条件是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁