《2022年最新人教版九年级数学下册第二十八章-锐角三角函数专题测评练习题(精选).docx》由会员分享,可在线阅读,更多相关《2022年最新人教版九年级数学下册第二十八章-锐角三角函数专题测评练习题(精选).docx(34页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版九年级数学下册第二十八章-锐角三角函数专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,ABC的顶点在正方形网格的格点上,则cosACB的值为( )ABCD2、如图,在中,点P为AC上一
2、点,且,则的值为( )A3B2CD3、如图,有一个弓形的暗礁区,弓形所含的圆周角,船在航行时,为保证不进入暗礁区,则船到两个灯塔A,B的张角应满足的条件是( )ABCD4、如图,在直角坐标平面内有一点,那么射线与轴正半轴的夹角的正切值是( )ABCD5、某人沿坡度的斜坡向上前进了10米,则他上升的高度为( )A5米BCD6、如图,在ABC中,C90,BC1,AB,则下列三角函数值正确的是()AsinABtanA2CcosB2DsinB7、学习了三角函数的相关知识后,小丽测量了斜坡上一棵垂直于地面的大树的高度如图,小丽先在坡角为的斜坡上的点A处,测得树尖E的仰角为,然后沿斜坡走了10米到达坡脚B
3、处,又在水平路面上行走20米到达大树所在的斜坡坡脚C处,大树所在斜坡的坡度,且大树与坡脚的距离为15米,则大树的高度约为( )(参考数据:结果精确到0.1)A10.9米B11.0米C6.9米D7.0米8、请比较sin30、cos45、tan60的大小关系()Asin30cos45tan60Bcos45tan60sin30Ctan60sin30cos45Dsin30tan60cos459、如图,在网格中,小正方形的边长均为1,点A、B、C都在格点上,则的正弦值是( )A2BCD10、如图,在边长为2的正方形ABCD中,E,F分别为BC,CD的中点,连接AE,BF交于点G,将BCF沿BF对折,得到
4、BPF,延长FP交BA延长线于点Q下列结论错误的是()AAEBFBQBQFCcosBQPDS四边形ECFGSBGE第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平面直角坐标系xOy中,点B在x轴正半轴上,点D在y轴正半轴上,C经过A,B,D,O四点,OAB120,OB4,则点D的坐标是_2、半径为3cm的圆内有长为的弦,则此弦所对的圆周角的度数为_3、如图,矩形ABCD中,DEAC于点E,ADE,cos,AB4,AD长为_4、如图,ABC中点D为AB的中点,将ADC沿CD折叠至ADC,若4ACAB,BC,cosABA,则点D到AC的距离是 _5、如图, 在 中
5、, 是斜边 上的中线, 点 是直线 左侧一点, 联结 , 若 , 则 的值为_三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系中,抛物线与轴交于点、点,与轴交于点,点在第三象限的抛物线上,直线经过点、点,点的横坐标为(1)如图1,求抛物线的解析式;(2)如图2,直线交轴于点,过点作轴,交轴于点,交抛物线于点,过点作,交直线于点,求线段的长;(3)在(2)的条件下,点在上,直线交于点,点在第二象限,连接交于点,连接,点在的延长线上,点在直线上,且点的横坐标为5,连接,求点的纵坐标 2、计算:3、如图,AB是O的直径,弦CDAB与点E,点P在O上,1=C,(1)求证:CBPD;(
6、2)若BC=6,sinP=,求O的直径4、(1)计算:(2)如图,在菱形ABCD中,于点E,求菱形的边长5、计算:-参考答案-一、单选题1、D【分析】根据图形得出AD的长,进而利用三角函数解答即可【详解】解:过A作ADBC于D,DC=1,AD=3,AC=,cosACB=,故选:D【点睛】本题主要考查了解直角三角形,解题的关键是掌握勾股定理逆定理及余弦函数的定义2、A【分析】过点P作PDAB交BC于点D,因为,且,则tanPBD=tan45=1,得出PB=PD,再有,进而得出tanAPB的值【详解】解:如图,过点作交于点,,,且,PBD=45,又,故选A【点睛】本题主要考查了相似三角形的性质与判
7、定,解直角三角形,解题的关键在于能够正确作出辅助线进行求解3、D【分析】本题利用了三角形外角与内角的关系和圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半【详解】如图,AS交圆于点E,连接EB,由圆周角定理知,AEB=C=50,而AEB是SEB的一个外角,由AEBS,即当S50时船不进入暗礁区所以,两个灯塔的张角ASB应满足的条件是ASB50cosASBcos50,故选:D【点睛】本题考查三角形的外角的性质,圆周角定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题4、D【分析】作PMx轴于点M,构造直角三角形,根据三角函数的定义求解【详解】解:作P
8、Mx轴于点M,P(6,8),OM=6,PM=8,tan=故选:D【点睛】本题考查解直角三角形,解题的关键是学会添加常用辅助线,构造直角三角形解决问题5、B【分析】由坡度定义可得位置升高的高度即为坡角所对的直角边根据题意可得BC:AC=1:2,AB=10m,可解出直角边BC,即得到位置升高的高度【详解】解:由题意得,BC:AC=1:2 设BC=x,则AC=2xAB=10, BC2+ AC2=AB2,x2+ (2x)2=102,解得:x=故选:B【点睛】本题主要考查了坡度的定义和解直角三角形的应用,注意画出示意图会使问题具体化6、D【分析】根据正弦、余弦及正切的定义直接进行排除选项【详解】解:在A
9、BC中,C90,BC1,AB,;故选D【点睛】本题主要考查三角函数,熟练掌握三角函数的求法是解题的关键7、D【分析】过点A作AGED交ED延长线于点G,过点A作AFCB,交CB的延长线于点F,延长BC交ED的延长线于点H,可知四边形AFHG为矩形,解直角三角形ABF得AF=5,BF=,解直角三角形CDH得DH=9,CH=12,从而得到AG,再通过解直角三角形AGE求得EG的长,进一步得出结论【详解】解:过点A作AGED交ED延长线于点G,过点A作AFCB,交CB的延长线于点F,延长BC交ED的延长线于点H,如图,则四边形AFHG为矩形,AG=FH,GH=AF在RtABF中, 在RtCHD中,
10、可设, 由勾股定理得, 解得, 在RtAGE中, 故选:D【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键8、A【分析】利用特殊角的三角函数值得到sin30,cos45,tan60,从而可以比较三个三角函数大小【详解】解答:解:sin30,cos45,tan60,而,sin30cos45tan60故选:A【点睛】本题主要考查了特殊角的三角函数值的应用,实数比大小,准确计算是解题的关键9、C【分析】根据网格的特点,勾股定理求得的长,进而根据勾股定理逆定理判定是直角三角形,进而根据正弦的定义求解即可【详解】解:是直角三角形,且是斜边故选C【
11、点睛】本题考查了网格中勾股定理与勾股定理的逆定理的应用,正弦的定义,证明是直角三角形是解题的关键10、C【分析】BCF沿BF对折,得到BPF,利用角的关系求出QF=QB,即可判断B;首先证明ABEBCF,再利用角的关系求得BGE=90,即可得到AEBF即可判断A;利用QF=QB,解出BP,QB,根据正弦的定义即可求解即可判断C;可证BGE与BCF相似,进一步得到相似比,再根据相似三角形的性质即可求解即可判断D【详解】解:四边形ABCD是正方形,C=90,ABCD,由折叠的性质得:FPFC,PFBBFC,FPB=C90,CDAB,CFBABF,ABFPFB,QFQB,故B选项不符合题意;E,F分
12、别是正方形ABCD边BC,CD的中点,CD=BC,ABE=C=90,CFBE,在ABE和BCF中, ,ABEBCF(SAS),BAECBF,又BAE+BEA90,CBF+BEA90,BGE90,AEBF,故A选项不符合题意;令PFk(k0),则PB2k,在RtBPQ中,设QBx,x2(xk)2+4k2,x,cosBQP,故C选项符合题意;BGEBCF,GBECBF,BGEBCF,BEBC,BFBC,BE:BF1:,BGE的面积:BCF的面积1:5,S四边形ECFG4SBGE,故D选项不符合题意故选C【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,相似三角形的性质与判定,勾股定理,解
13、直角三角形,解题的关键在于能够熟练掌握相关知识进行求解二、填空题1、 (0,4)【解析】【详解】先利用圆内接四边形的性质得到BDO60,解直角三角形求出OD,可得结论【分析】解:四边形ABDO为圆的内接四边形,OAB+BDO180,BDO18012060,DOB90,在RtABO中,tanBDO,OB4OD4,D(0,4)故答案为:(0,4)【点睛】本题考查了圆周角定理,圆内接四边形的性质,解直角三角形等知识,解题的关键是证明BDO602、60或120【解析】【分析】如下图所示,分两种情况考虑:D点在优弧CDB上或E点在劣弧BC上时,根据三角函数可求出OCF的大小,进而求出BOC的大小,再由圆
14、周角定理可求出D、E大小,进而得到弦BC所对的圆周角【详解】解:分两种情况考虑:D在优弧CDB上或E在劣弧BC上时,可得弦BC所对的圆周角为D或E,如下图所示,作OFBC,由垂径定理可知,F为BC的中点,BC=,CF=BF=BC= =,又因为半径为3,OC=3,在RtFOC中,cosOCF= =3=,OCF=30,OC=OB,OCF=OBF=30,COB=120,D=COB=120=60,又圆内接四边形的对角互补,E=120,则弦BC所对的圆周角为60或120故答案为:60或120【点睛】此题考查了圆周角定理,圆内接四边形的性质,锐角三角函数定义,以及特殊角的三角函数值,熟练掌握圆周角定理是解
15、本题的关键3、【解析】【分析】将已知角度的三角函数转换到所需要的三角形中,得到ADE=DCE=,求出AC的值,再由勾股定理计算即可【详解】ADC=AED=90,DAE+ADE=ADE+CDE=90DAE =CDE又DCE+CDE=90ADE=DCE=cos=又矩形ABCD中AB=CD=4AC=在中满足勾股定理有故答案为:【点睛】本题考查了已知余弦长求边长,将已知余弦长转换到所需要的三角形中是解题的关键4、57373【解析】【分析】过点D作DFAC交CA的延长线于点F,过点B作BGAC交CA延长线于点G,连接AA交CD于点E,设AB=4m,则AC=73m,将ADC沿CD折叠至ADC,由等边对等角
16、可得AAD=AAD,CAE=CAE,ABA=BAD,根据三角形内角和定理可得AAB=BAD+AAD=90,在直角三角形中利用锐角三角函数可得AB=213m,再由勾股定理可得AE=AE=12AA=3m,CD=CE+DE=10m,由相似三角形的判定及性质可得AG=3273m,BG=1273m,再由勾股定理及求解方程可得:m=16,最后根据三角形等面积法进行求解即可得【详解】解:过点D作DFAC交CA的延长线于点F,过点B作BGAC交CA延长线于点G,连接AA交CD于点E,4AC=73AB,设AB=4m,则AC=73m,将ADC沿CD折叠至ADC,AACD,AC=AC=73m,AD=AD,AE=AE
17、,AAD=AAD,CAE=CAE,点D为AB中点,AD=BD,BD=AD,ABA=BAD,ABA+BAD+AAD+AAD=180,2BAD+AAD=180,AAB=BAD+AAD=90,cosABA=ABAB=4mAB=21313r,AB=213m,AD=BD=12AB=13m,AAB=90,AA=AB2-AB2=(213m)2-(4m)2=6m,AE=AE=12AA=3m,AACD,CE=AC2-AE2=(73m)2-(3m)2=8m,DE=AD2-AE2=(13m)2-(3m)2=2m,CD=CE+DE=10m,BGAC,ABG+BAG=90,AAB=90,CAE+BAG=90,ABG=C
18、AE,CAE=CAE,ABG=CAE,在AGB与CEA中,ABG=CAE,AGB=CEA=90,AGBCEA,AGCE=BGAE=ABAC,AG8m=BG3m=4m73m,AG=3273m,BG=1273m,CG=AG+AC=3273m+73m=10573m,BGAC,CG2+BG2=BC2,(10573m)2+(1273m)2=(1217)2,解得:m2=136,m=16,AACD,DFAC,SACD=12CDAE=12ACDF,DF=CDAEAC=10m3m73m=57373,点D到AC的距离为57373,故答案为:57373【点睛】题目主要考查等腰三角形的性质、利用锐角三角函数解三角形、
19、三角形内角和定理、勾股定理、相似三角形的判定和性质等,理解题意,作出相应辅助线,综合运用各个知识点是解题关键5、【解析】【分析】先证明,则,进而证明,据求得相似比,根据面积比等于相似比的平方即可求解【详解】解:是斜边 上的中线, 即又又又设,则故答案为:【点睛】本题考查了解直角三角形,三角形全等的性质与判定,相似三角形的性质与判定,直角三角形斜边上的中线等于斜边的一半,垂直平分线的性质与判定,正切的定义,证明是解题的关键三、解答题1、(1)抛物线的解析式为:;(2);(3)点N的纵坐标为5【解析】【分析】(1)根据题意可得一次函数图象经过A、D两点,所以当及当时,可确定A、D两点坐标,然后代入
20、抛物线解析式求解即可确定;(2)根据题意当时,代入抛物线解析式确定点P的坐标,求得,然后求出直线与y轴的交点T,利用勾股定理确定,由平行可得三角形相似,利用相似三角形的性质即可得出结果;(3)过点P作轴,且,即,利用相似三角形的性质可确定,求出直线GF的函数解析式,过点M作轴,设且,可求得MF的长度,设直线MP的函数解析式为:,将点,代入即可确定点的坐标,求出,根据题意即可确定点,设点R、点N在如图所示位置:过点N作轴,过点M作,过点R作,利用相似三角形及勾股定理即可得出结果【详解】解:(1)经过A、D两点,当时,解得,当时,将A、D两点代入抛物线解析式可得:,解得:,抛物线的解析式为:;(2
21、)当时,解得:,直线解析式,当时,在中,轴,轴,即;(3)如图所示:过点P作轴,且,即,设直线GF的函数解析式为:,可得:,解得:,直线GF的函数解析式为:,过点M作轴,设且,即,设直线MP的函数解析式为:,将点,代入可得:可得:,解得:,点,解得:,点,设点R、点N在如图所示位置:过点N作轴,过点M作,过点R作,设,则,代入化简可得:,联立求解可得:,点N的纵坐标为5【点睛】题目主要考查一次函数与二次函数的综合问题,包括待定系数法确定函数解析式,相似三角形的判定和性质,勾股定理,锐角三角函数解直角三角形等,理解题意,作出相应辅助线是解题关键2、0【解析】【分析】根据乘方,二次根式的化简、特殊
22、的三角函数值,零指数幂的意义以及绝对值的性质即可求出答案【详解】解:原式=-2+2=0【点睛】本题考查了实数的运算,乘方,二次根式的化简、特殊的三角函数值,零指数幂的意义以及绝对值的性质,熟练掌握各自的性质是解本题的关键3、(1)见解析;(2)10【解析】【分析】(1)根据题意有,推出,故可证;(2)连接AC构造直角三角形,则,即,所以可以求得圆的直径【详解】(1),;(2)如图,连接AC,AB为O的直径,即,O的直径为10【点睛】本题考查圆的性质以及锐角三角函数,掌握相关知识点的应用是解题的关键4、(1)1;(2)13【解析】【分析】(1)根据特殊角的三角函数值、负整数指数幂及实数的绝对值的含义即可完成;(2)根据菱形的性质可得AB=AD,再由已知条件设,则由勾股定理可得AE,则由BE=8建立方程即可求得k,从而求得菱形的边长【详解】解:(1)原式.(2)四边形ABCD是菱形,.,设,则,即菱形的边长为13.【点睛】本题考查了特殊角的三角函数值、负整数指数幂及实数的绝对值,菱形的性质、三角函数及勾股定理,灵活运用这些知识是关键5、【解析】【分析】对式子的中各项分别化简,然后利用实数的加减运算法则,即可得到正确答案【详解】解:=【点睛】本题主要是考查了实数的运算,包括了去绝对值、0次幂、负整数幂、锐角三角函数值、二次根式以及乘方运算,熟练掌握以上每项的运算法则,是求解该题的关键