2022年强化训练京改版九年级数学下册第二十五章-概率的求法与应用定向测试试题(含解析).docx

上传人:可****阿 文档编号:30717024 上传时间:2022-08-06 格式:DOCX 页数:19 大小:453.05KB
返回 下载 相关 举报
2022年强化训练京改版九年级数学下册第二十五章-概率的求法与应用定向测试试题(含解析).docx_第1页
第1页 / 共19页
2022年强化训练京改版九年级数学下册第二十五章-概率的求法与应用定向测试试题(含解析).docx_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《2022年强化训练京改版九年级数学下册第二十五章-概率的求法与应用定向测试试题(含解析).docx》由会员分享,可在线阅读,更多相关《2022年强化训练京改版九年级数学下册第二十五章-概率的求法与应用定向测试试题(含解析).docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、九年级数学下册第二十五章 概率的求法与应用定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一个不透明口袋中装着只有颜色不同的1个红球和2个白球,搅匀后从中摸出一个球,摸到红球的概率为().ABCD

2、12、把形状完全相同风景不同的两张图片全部从中剪断,再把四张形状相同的小图片混合在一起,从四张图片中随机摸取两张,则这两张小图片恰好合成一张完整图片的概率为( )ABCD3、从一副完整的扑克牌中任意抽取1张,下列事件与抽到“A”的概率相同的是()A抽到“大王”B抽到“红桃”C抽到“小王”D抽到“K”4、将分别标有“中”“国”“加”“油”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀随机摸出一球,不放回;再随机摸出一球两次摸出的球上的汉字能组成“加油”的概率是( )ABCD5、下列说法中,正确的是( )A“射击运动员射击一次,命中靶心”是必然事件B事件发生的

3、可能性越大,它的概率越接近1C某种彩票中奖的概率是1%,因此买100张该种彩票就一定会中奖D抛掷一枚图钉,“针尖朝上”的概率可以用列举法求得6、盒子中装有1个红球和2个绿球,每个球除颜色外都相同,从盒子中任意摸出1个球,不放回,再任意摸出1个球,两球都是绿球的概率是( )ABCD7、掷一个骰子时,点数小于2的概率是( )ABCD08、做随机抛掷一枚纪念币的试验,得到的结果如下表所示:抛掷次数m5001000150020002500300040005000“正面向上”的次数n26551279310341306155820832598“正面向上”的频率0.5300.5120.5290.5170.5

4、220.5190.5210.520下面有3个推断:当抛掷次数是1000时,“正面向上”的频率是0.512,所以“正面向上”的概率是0.512;随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;若再次做随机抛掷该纪念币的实验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次其中所有合理推断的序号是( )ABCD9、投掷一枚质地均匀的硬币m次,正面向上n次,下列表达正确的是( )A的值一定是B的值一定不是Cm越大,的值越接近D随着m的增加,的值会在附近摆动,呈现出一定的稳定性10、某区为了解初中生体质健康水平

5、,在全区进行初中生体质健康的随机抽测,结果如下表:根据抽测结果,下列对该区初中生体质健康合格的概率的估计,最合理的是( ) 累计抽测的学生数n1002003004005006007008009001000体质健康合格的学生数与n的比值0.850.90.930. 910.890.90.910.910.920.92A0.92B0.905C0.03D0.9第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、从1、1、0三个数中任取两个不同的数作为点的坐标,则该点在坐标轴上的概率是_2、如图,小颖在围棋盘上两个格子的格点上任意摆放黑、白两个棋子,且两个棋子不在同一条网格线上,其中,

6、恰好摆放成如图所示位置的概率是_3、一个密闭不透明的盒子里装有若干个质地、大小均完全相同的白球和黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球4000次,其中800次摸到黑球,则估计从中随机摸出一个球是黑球的概率为_4、在“Wishyousuccess”中,任选一个字母,这个字母为“s”的概率为_5、即将举行的2022年杭州亚运会吉祥物“宸宸”、“琮琮”、“莲莲”,将三张正面分别印有以上3个吉祥物图案的卡片(卡片的形状、大小、质地都相同)背面朝上、洗匀若先从中任意抽取1张,记录后放回,洗匀,再从中任意抽取1张,两次抽取的卡片图案相同的概率是_三、解答题(5小题,每小题

7、10分,共计50分)1、为了贯彻“减负增效”精神,掌握九年级600名学生每天的自主学习情况,某校学生会随机抽查了九年级的部分学生,并调查他们每天自主学习的时间根据调查结果,制作了两幅不完整的统计图(图1,图2),请根据统计图中的信息回答下列问题: (1)本次调查的学生人数是_人;(2)图2中是_度,并将图1条形统计图补充完整;(3)老师想从学习效果较好的4位同学(分别记为A、B、C、D,其中A为小亮)随机选择两位进行学习经验交流,用列表法或树状图的方法求出选中小亮A的概率2、从两副完全相同的扑克中,抽出两张黑桃5和两张梅花8,现将这四张扑克牌洗匀后,背面向上放在桌子上,(1)问从中随机抽取一张

8、扑克牌是梅花8的概率是多少?(2)利用树状图或列表法表示从中随机抽取两张扑克牌成为一对的概率3、不透明的口袋里装有2个红球和2个黄球(除颜色不同外,其它都相同)现进行两次摸球活动,第一次随机摸出一个小球后不放回,第二次再随机摸出一个小球,请用树状图或列表法,求两次摸出的都是红球的概率4、有4个完全相同的小球,把它们分别标号为1、2、3、4,放在一个口袋中,随机的摸出一个小球然后放回,再随机的摸出一个小球(1)求两次摸出的球的标号相同的概率;(2)求两次摸出的球的标号的和等于4的概率5、某公园有A、B两个出口,进去游玩的甲、乙两人各自随机选择A、B两个出口中的一个离开,请用列表或画树状图法求他们

9、两人选择同一个出口离开的概率-参考答案-一、单选题1、C【分析】根据概率的求法,找准两点:全部情况的总数;符合条件的情况数目;二者的比值就是其发生的概率本题球的总数为1+2=3,红球的数目为1【详解】解:根据题意可得:一个不透明口袋中装着只有颜色不同的1个红球和2个白球,共3个,任意摸出1个,摸到红球的概率是:13=故选:C【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=2、B【分析】设四张小图片分别用A,a,B,b表示,画树状图,然后根据树状图找出满足条件的结果即可得出概率【详解】解:设四张小图片分别用A,a,B

10、,b表示,画树状图得:由图可得,共有12种等可能的结果,其中摸取两张小图片恰好合成一张完整图片的结果共有4种,摸取两张小图片恰好合成一张完整图片的概率为:,故选:B【点睛】题目主要考查利用树状图或列表法求概率问题,理解题意,熟练运用树状图或列表法是解题关键3、D【分析】抽到“A”的概率为,只要计算四个选项中的概率,即可得到答案【详解】抽到“A”的概率为,而抽到“大王”与抽到“小王”的概率均为,抽到“红桃”的概率为,抽到“K”的概率为,即抽到“K”的概率与抽到“A”的概率相等故选:D【点睛】本题考查了简单事件的概率,根据概率计算公式,要知道所有可能结果数,及事件发生的结果数,即可求得事件的概率4

11、、B【分析】列表得出所有等可能的情况数,找出能组成“加油”的情况数,再利用概率公式计算即可【详解】解:根据题意可列表如下:中国加油中中、国中、加中、油国国、中国、加国、油加加、中加、国加、油油油、中油、国油、加一共有43=12种可能,其中能组成“加油”的有2种,两次摸出的球上的汉字能组成“加油”的概率是故选:B【点睛】本题考查了列表法或树状图法求概率,根据题意列出所有等可能结果是解题关键5、B【分析】根据随机事件,必然事件,不可能事件的定义可判断A,根据随机事件发生的机会大小,估计概率的大小可判断B,可判断C,不规则物体的概率只能通过大数次的实验,使频率达到稳定时用频率估计概率可判断D【详解】

12、解:“射击运动员射击一次,命中靶心”可能会发生,也可都能不会发生是随机事件不是必然事件,故选项A不正确;事件发生的可能性越大,说明发生的机会越大,它的概率越接近1,故选项B正确;某种彩票中奖的概率是1%,因此买100张该种彩票每一张彩票中奖的概率都是1%,可能会中奖,但一定会中奖机会很小,故选项C不正确;图钉是不规则的物体,抛掷一枚图钉,“针尖朝上”的概率只能通过实验,大数次的实验,使频率稳定时,可用频率估计概率,不可以用列举法求得,故选项D不正确故选择B【点睛】本题考查事件,事件发生的可能性,概率,实验概率,掌握事件,事件发生的可能性,概率,实验概率知识是解题关键6、B【分析】利用列表法把所

13、有等可能的情况都列出来,然后分析出两球都是绿球的情况,根据概率公式求解即可【详解】所有等可能的情况如下:红球绿球1绿球2红球(绿球1,红球)(绿球2,红球)绿球1(红球,绿球1)(绿球2,绿球1)绿球2(红球,绿球2)(绿球1,绿球2)一共有6种等可能的情况,其中两球都是绿球的情况有2种,两球都是绿球的概率是故选:B【点睛】本题考查的是用列表法或画树状图法求概率解题的关键是熟练掌握列表法或画树状图法列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件用到的知识点为:概率=所求情况数与总情况数之比7、A【分析】让骰子里小于2的数

14、的个数除以数的总数即为所求的概率【详解】解:掷一枚均匀的骰子时,有6种情况,即1、2、3、4、5、6,出现小于2的点即1点的只有一种,故其概率是故选:A【点睛】本题考查了概率公式的应用,解题的关键是注意概率所求情况数与总情况数之比8、C【分析】根据概率公式和图表给出的数据对各项进行判断,即可得出答案【详解】解:当抛掷次数是1000时,“正面向上”的频率是0.512,所以“正面向上”的概率是0.512;随着试验次数的增加,“正面向上”的频率总在什么数值附近摆动,才能用频率估计概率,故错误;随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率

15、是0.520;正确;若再次做随机抛掷该纪念币的实验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次正确;故选:C【点睛】本题考查利用频率估计概率,解答本题的关键是明确概率的定义,利用数形结合的思想解答9、D【分析】根据频率与概率的关系以及随机事件的定义判断即可【详解】投掷一枚质地均匀的硬币正面向上的概率是,而投掷一枚质地均匀的硬币正面向上是随机事件,是它的频率,随着m的增加,的值会在附近摆动,呈现出一定的稳定性;故选:D【点睛】本题考查对随机事件的理解以及频率与概率的联系与区别解题的关键是理解随机事件是都有可能发生的时间10、A【分析】根据频数估计概率可直接进行求解【详解】

16、解:由表格可知:经过大量重复试验,体质健康合格的学生数与抽测的学生数n的比值稳定在0.92附近,所以该区初中生体质健康合格的概率为0.92;故选A【点睛】本题主要考查用频数估计概率,熟练掌握利用频数估计概率是解题的关键二、填空题1、【分析】根据题意列表得出所有等可能的情况数,找出刚好在坐标轴上的点个数,即可求出所求的概率【详解】解:列表得: -110-1-(1,-1)(0,-1)1(-1,1)-(0,1)0(-1,0)(1,0)-所有等可能的情况有6种,其中该点刚好在坐标轴上的情况有4种,所以该点在坐标轴上的概率.故答案为:【点睛】本题考查列表法与树状图法和点的坐标特征,注意掌握通过列表法或树

17、状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率2、【分析】由题意根据概率的求法,找准两点:全部情况的总数;符合条件的情况数目;二者的比值就是其发生的概率【详解】解:如图假设围棋盘上两个格子的格点分别为,白球在网格上有6种摆放方法,两棋子不在同一条格线上的摆放记为(白,黑)共有12种摆放方法,其中,恰好摆放成如图所示位置的情况只有1种,故概率为:.故答案为:【点睛】本题考查概率的求法.注意掌握如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=3、【分析】可根据“黑球数量黑白球总数=黑球

18、所占比例”来列等量关系式,“黑球所占比例=随机摸到的黑球次数总共摸球的次数”【详解】解:共摸球4000次,其中800次摸到黑球,从中随机摸出一个球是黑球的概率为,故答案为:【点睛】考查利用频率估计概率,大量反复试验下频率稳定值即概率用到的知识点为:频率=所求情况数与总情况数之比4、【分析】根据概率公式进行计算即可【详解】解:任选一个字母,这个字母为“s”的概率为:,故答案为:【点睛】本题考查了概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=5、【分析】画树状图,共有9种等可能的结果,两次抽取的卡片图案相同的结果有3种,再由概率公式求解即

19、可【详解】把吉祥物“宸宸”、“琮琮”、“莲莲”三张卡片分别记为A、B、C,画树状图如图:共有9种等可能的结果,两次抽取的卡片图案相同的结果有3种,两次抽取的卡片图案相同的概率为,故答案为:【点睛】此题考查了列表法与树状图法;正确画出树状图是解题的关键,用到的知识点为:概率所求情况数与总情况数之比三、解答题1、(1)40;(2)54;补图见解析;(3)【分析】(1)由自主学习的时间是1小时的有12人,占30%,即可求得本次调查的学生人数;(2)用360乘以自主学习的时间是0.5小时的人数所占的百分比即可求出,再用总人数乘以自主学习的时间是1.5小时的人数所占的百分比,即可得出答案,从而补全统计图

20、;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选中A的情况,再利用概率公式求解即可求得答案【详解】解:(1)自主学习的时间是1小时的有12人,占30%,则本次调查的学生人数是1230%=40(人),故答案为:40;(2),故答案为:54;自主学习的时间是0.5小时的人数为4035%=14;补充图形如图: (3)画树状图得:共有12种等可能的结果,选中小亮A的有6种可能,P(A)=【点睛】本题考查的是用列表法或画树状图法求概率与扇形统计图、条形统计图的知识列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件注

21、意概率=所求情况数与总情况数之比2、(1);(2)【分析】(1)根据概率公式计算即可;(2)根据列表法求概率即可【详解】(1)根据题意共有4张牌,两张梅花8,从中随机抽取一张扑克牌是梅花8的概率是;(2)列表如下,55885558585555858585858888585888共有12种等可能结果,其中凑成一对的有4种,随机抽取两张扑克牌成为一对的概率为【点睛】本题考查了概率公式求求概率和列表法求概率,掌握求概率的方法是解题的关键3、两次摸出的都是红球的概率为【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出都是红球的情况,再利用概率公式即可求得答案;【详解】解:根据题

22、意,画树状图如下:共有12种结果,并且每种结果出现的可能性相同,符合题意的结果有2种,所以(两次摸出的都是红球).【点睛】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件注意概率=所求情况数与总情况数之比4、(1);(2)【分析】(1)先列出树状图,找到所有的等可能性的结果数,然后找到两次摸出的球的标号相同的结果数,最后利用概率公式求解即可;(2)根据(1)所列树状图,找到两次摸出的球的标号和为4的结果数,利用概率公式求解即可【详解】解:(1)列树状图如下所示:由树状图可知一共有16种

23、等可能性的结果数,其中两次摸出的球的标号相同的结果数有4种,(两次摸出的球的标号相同);(2)由树状图可知一共有16种等可能性的结果数,其中两次摸出的球的标号的和为4的结果数有(1,3),(2,2),(3,1)3种,(两次摸出的球的标号的和等于4)【点睛】本题主要考查了树状图法或列表法求解概率,解题的关键在于能够熟练掌握树状图法或列表法求解概率5、【分析】画出树状图,然后根据概率公式列式计算即可得解【详解】解:根据题意画出树状图如下:甲、乙、两人各自随机选择一个出口离开的所有可能出现的结果有:(AA)、(AB)、(BA)、(BB),共有4种,它们出现的可能性相同,所有的结果中,满足“两人选择同一个出口离开”(记为事件A)的结果有2种,所以P(A)【点睛】本题考查了列表法与树状图法求概率,用到的知识点为:概率所求情况数与总情况数之比.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁