2021-2022学年度沪教版七年级数学第二学期第十五章平面直角坐标系综合测试练习题.docx

上传人:可****阿 文档编号:30705618 上传时间:2022-08-06 格式:DOCX 页数:29 大小:914.04KB
返回 下载 相关 举报
2021-2022学年度沪教版七年级数学第二学期第十五章平面直角坐标系综合测试练习题.docx_第1页
第1页 / 共29页
2021-2022学年度沪教版七年级数学第二学期第十五章平面直角坐标系综合测试练习题.docx_第2页
第2页 / 共29页
点击查看更多>>
资源描述

《2021-2022学年度沪教版七年级数学第二学期第十五章平面直角坐标系综合测试练习题.docx》由会员分享,可在线阅读,更多相关《2021-2022学年度沪教版七年级数学第二学期第十五章平面直角坐标系综合测试练习题.docx(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、七年级数学第二学期第十五章平面直角坐标系综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、平面直角坐标系中,将点A(,)沿着x的正方向向右平移()个单位后得到B点,则下列结论:B点的坐标为(,);线

2、段AB的长为3个单位长度;线段AB所在的直线与x轴平行;点M(,)可能在线段AB上;点N(,)一定在线段AB上其中正确的结论有( )A2个B3个C4个D5个2、在平面直角坐标系中,点的坐标是,点与点关于轴对称,则点的坐标是( )ABCD3、点A(-3,1)到y轴的距离是()个单位长度A-3B1C-1D34、在平面直角坐标系中,若点与点关于原点对称,则点在( )A第一象限B第二象限C第三象限D第四象限5、点(a,3)关于原点的对称点是(2,b),则ab( )A5B5C1D16、平面直角坐标系中,点P(,)和点Q(,)关于轴对称,则的值是( )ABCD7、若点在第三象限,则点在( )A第一象限B第

3、二象限C第三象限D第四象限8、在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则( )Am=3,n=2Bm=,n=2Cm=2,n=3Dm=,n=9、如图,在平面直角坐标系中,已知“蝴蝶”上有两点,将该“蝴蝶”经过平移后点的对应点为,则点的对应点的坐标为( )ABCD10、如图,在平面直角坐标系中,长方形的顶点的坐标分别为,点是的中点,点在上运动,当时,点的坐标是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,点P(-3,7)关于原点对称的点的坐标是_2、点到轴的距离为_,到轴的距离为_3、若点A在第二象限,且A点到x轴的

4、距离为3,到y轴的距离为4,则点A的坐为_4、如图,的顶点都在正方形网格的格点上,点A的坐标为,将沿坐标轴翻折,则点C的对应点的坐标是_5、如图,平面直角坐标系中,是边长为2的等边三角形,作与关于点成中心对称,再作与于点成中心对称,如此作下去,则的顶点的坐标是_三、解答题(10小题,每小题5分,共计50分)1、如图,已知ABC各顶点的坐标分别为A(-3,2),B(-4,-3),C(-1,-1) (1)请在图中画出ABC关于y轴对称的A1B1C1,(2)并写出A1B1C1的各点坐标2、已知点A(a+2b,1),B(2,2ab),若点A,B关于y轴对称,求a+b的值3、如图所示的方格纸中,每个小正

5、方形的边长都是1个单位长度,三角形ABC的三个顶点都在小正方形的顶点上(1)画出三角形ABC向左平移4个单位长度后的三角形DEF(点D、E、F与点A、B、C对应),并画出以点E为原点,DE所在直线为x轴,EF所在直线为y轴的平面直角坐标系;(2)在(1)的条件下,点D坐标(3,0),将三角形DEF三个顶点的横坐标都减去2,纵坐标都加上3,分别得到点P、Q、M(点P、Q、M与点D、E、F对应),画出三角形PQM,并直接写出点P的坐标4、如图,在平面直角坐标系中,ABC的三个顶点的坐标分别为A(2,1),B(0,1),C(0,4)(1)画出ABC关于x轴对称的A1B1C1,A、B、C的对应点分别为

6、A1,B1,C1;(2)画出ABC绕原点O逆时针方向旋转90得到的A2B2C2,A、B、C的对应点分别为A2,B2,C2连接B2C2,并直接写出线段B2C2的长度5、已知:如图,在平面直角坐标系中(1)作出ABC关于y轴对称的A1B1C1,并写出A1B1C1三个顶点的坐标:A1( ),B1( ),C1( );(2)直接写出ABC的面积为 ;(3)在x轴上画点P,使PA+PC最小6、如图,在平面直角坐标系中,ABC的两个顶点A,B在x轴上,顶点C在y轴上,且ACB90(1)图中与ABC相等的角是 ;(2)若AC3,BC4,AB5,求点C的坐标7、如图,在平面直角坐标系中,已知的三个顶点的坐标分别

7、为、(1)画出将关于点对称的图形;(2)写出点、的坐标8、如图,在平面直角坐标系中,ABC的顶点坐标分别为A(2,5),B(1,1),C(3,2)(1)画出ABC关于轴对称的A1B1C1的图形及各顶点的坐标;(2)画出ABC关于轴对称的A2B2C2的图形及各顶点的坐标; (3)求出ABC的面积9、在平面直角坐标系中,的顶点坐标是、(1)画出绕点B逆时针旋转的;(2)画出关于点O的中心对称图形;(3)可由绕点M旋转得,请写出点M的坐标:_10、如图,在平面直角坐标系中,已知线段AB;(1)请在y轴上找到点C,使ABC的周长最小,画出ABC,并写出点C的坐标;(2)作出ABC关于y轴对称的ABC;

8、(3)连接BB,AA求四边形AABB的面积-参考答案-一、单选题1、B【分析】根据平移的方式确定平移的坐标即可求得B点的坐标,进而判断,根据平移的性质即可求得的长,进而判断,根据平移的性质可得线段AB所在的直线与x轴平行,即可判断,根据纵坐标的特点即可判断【详解】解:点A(,)沿着x的正方向向右平移()个单位后得到B点,B点的坐标为(,);故正确;则线段AB的长为;故不正确;A(,),B(,);纵坐标相等,即点A,B到x轴的距离相等线段AB所在的直线与x轴平行;故正确若点M(,)在线段AB上;则,即,不存在实数故点M(,)不在线段AB上;故不正确同理点N(,)在线段AB上;故正确综上所述,正确

9、的有,共3个故选B【点睛】本题考查了平移的性质,平面直角坐标系中点到坐标轴的距离,掌握平移的性质是解题的关键2、C【分析】根据关于轴对称的点坐标的特征:纵坐标不变,横坐标互为相反数,即可求解【详解】解:点的坐标是,点与点关于轴对称,的坐标为,故选:C【点睛】本题主要是考查了关于轴对称的点坐标的特征,熟练掌握关于坐标轴对称的点的特征,是解决该类问题的关键3、D【分析】由点到轴的距离等于该点坐标横坐标的绝对值,可以得出结果【详解】解:由题意知到轴的距离为到轴的距离是个单位长度故选D【点睛】本题考察了点到坐标轴的距离解题的关键在于明确距离的求解方法距离为正值是易错点解题技巧:点到轴的距离=;到轴的距

10、离=4、B【分析】根据点(x,y)关于原点对称的点的坐标为(x,y)可求得m、n值,再根据象限内点的坐标的符号特征即可解答【详解】解:点与关于原点对称,m=-2,m-n=3,n=1,点M(-2,1)在第二象限,故选:B【点睛】本题考查平面直角坐标系中关于原点对称的点的坐标、点所在的象限,熟知关于原点对称的点的坐标特征是解答的关键5、B【分析】根据关于原点对称的点的坐标特证构造方程-b3,a2,再解方程即可得到a、b的值,进而可算出答案【详解】解:点(a,3)关于原点的对称点是(2,b),b3,a2,解得:b-3,a2,则,故选择B【点睛】本题主要考查了关于原点对称的点的坐标:掌握关于原点对称的

11、特征,两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P(x,y)关键是利用对称性质构造方程6、A【分析】根据题意直接利用关于x轴对称点的性质得出a,b的值,进而代入计即可得出答案【详解】解:点P(,)和点Q(,)关于轴对称,故选:A.【点睛】本题考查关于x轴的对称点的坐标特点,注意掌握关于x轴的对称点的坐标特点为横坐标不变,纵坐标互为相反数.7、A【分析】根据第三象限点的横坐标与纵坐标都是负数,然后判断点Q所在的象限即可【详解】点P(m,n)在第三象限,m0,n0,-m0,-n0,点在第一象限故选:A【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的

12、坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)8、B【分析】由题意直接根据关于y轴对称点的性质求出m和n的值,从而得解.【详解】解:点A(m,2)与点B(3,n)关于y轴对称,纵坐标相同,横坐标互为相反数m=-3,n=2故答案为:B【点睛】本题主要考查关于y轴对称点的性质,正确掌握横纵坐标的符号关系是解题的关键9、D【分析】先根据与点对应,求出平移规律,再利用平移特征求出点B坐标即可【详解】解:与点对应,平移1-3=-2,3-7=-4,先向下平移4个单位,再向左平移2个单位,点B(7,7),点B(7-2,7-4)

13、即如图所示 故选:D【点睛】本题考查图形与坐标,点的平移特征,掌握点的平移特征是解题关键10、A【分析】由点是的中点,可得出点D的坐标,当,由等腰三角形的性质即可得出点P的坐标【详解】解:过点P作PMOD于点M,长方形的顶点的坐标分别为,点是的中点,点D(5,0),PMOD,OMDM即点M(2.5,0)点P(2.5,4),故选:A【点睛】此题主要考查了坐标与图形的性质和等腰三角形的性质,熟练掌握等腰三角形“三线合一”的性质是解题的关键二、填空题1、 (3,-7)【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案【详解】解:在平面直角坐标系中,点P(-3,7)关于原点对称

14、的点的坐标是(3,-7),故答案为:(3,-7)【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数2、5 2 【分析】根据横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是点到x轴的距离即可求解【详解】解:点到轴的距离为,到轴的距离为2故答案为:5;2【点睛】本题考查了坐标与图形的性质,横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是点到x轴的距离,掌握坐标的意义是解题的关键3、【分析】先根据点在第二象限可得点的横坐标为负数、纵坐标为正数,再根据点到坐标轴的距离即可得【详解】解:点在第二象限,点的横坐标为负数、纵坐标为正数,点到轴的距离为3,到

15、轴的距离为4,点的横坐标为、纵坐标为3,即点的坐标为,故答案为:【点睛】本题考查了点坐标、点到坐标轴的距离,熟练掌握四个象限内的点坐标的符号规律是解题关键4、或【分析】根据题意,分两种情况讨论:点C关于x轴翻折;点C关于y轴翻折;分别根据翻折情况坐标点的特点求解即可得【详解】解:点C关于坐标轴翻折,分两种情况讨论:点C关于x轴翻折,横坐标不变,纵坐标互为相反数可得:;点C关于y轴翻折,纵坐标不变,横坐标互为相反数可得:;故答案为:或【点睛】题目主要考查坐标系中轴对称的点的特点,理解题意,熟练掌握轴对称点的特点是解题关键5、【分析】首先根据是边长为2的等边三角形,可得的坐标为,的坐标为;然后根据

16、中心对称的性质,分别求出点、的坐标各是多少;最后总结出的坐标的规律,求出的坐标是多少即可【详解】解:是边长为2的等边三角形,的坐标为:,的坐标为:,与关于点成中心对称,点与点关于点成中心对称,点的坐标是:,与关于点成中心对称,点与点关于点成中心对称,点的坐标是:,与关于点成中心对称,点与点关于点成中心对称,点的坐标是:,的横坐标是:,的横坐标是:,当为奇数时,的纵坐标是:,当为偶数时,的纵坐标是:,顶点的纵坐标是:,是正整数)的顶点的坐标是:,的顶点的横坐标是:,纵坐标是:,故答案为:【点睛】此题主要考查了中心对称的性质、坐标与图形性质、等边三角形的性质等知识;熟练掌握等边三角形的性质和中心对

17、称的性质,分别判断出的横坐标和纵坐标是解题的关键三、解答题1、(1)见解析;(2)A1(3,2),B1(4,-3),C1(1,-1)【分析】(1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可;(2)根据所作图形可得答案【详解】解:(1)如图所示,A1B1C1即为所求作(2)由图可知,A1(3,2),B1(4,-3),C1(1,-1)【点睛】本题主要考查作图-轴对称变换,解题的关键是掌握轴对称变换的定义和性质,并据此得出变换后的对应点注意:关于x轴对称的点,横坐标相同,纵坐标互为相反数2、【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”列方程组求出a、b的值,然后相加计算即

18、可得解【详解】解:点A(a+2b,1),B(2,2ab)关于y轴对称,解得,a+b【点睛】本题考查了关于y轴对称的点的坐标特征,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数3、(1)见解析;(2)画图见解析,点P的坐标为(-5,3)【分析】(1)根据平移的特点先找出D、E、F所在的位置,然后根据题意建立坐标系即可;(2)将三角形DEF三个顶点的横坐标都减去2,纵坐标都加上3,分别得到点P、Q、M,即点P可以看作是点D向左平移2个单位,向上平移

19、3个单位得到的,由此求解即可【详解】解:(1)如图所示,即为所求;(2)如图所示,PQM即为所求;P是D(-3,0)横坐标减2,纵坐标加3得到的,点P的坐标为(-5,3)【点睛】本题主要考查了平移作图,根据平移方式确定点的坐标,解题的关键在于能够熟练掌握点坐标平移的特点4、(1)作图见解析;(2)作图见解析,【分析】(1)关于轴对称,即对应点横坐标不变,纵坐标互为相反数,找出坐标即可;(2)根据旋转的性质可画出图形,即可找出的坐标,由即可得出答案【详解】(1)关于轴对称的如图所作,,,;(2)绕原点逆时针方向旋转得到的如图所示,由旋转的性质得:【点睛】本题考查轴对称与旋转作图,掌握轴对称的性质

20、以及旋转的性质是解题的关键5、(1)作图见解析,(0,2),(2,4),(4,1);(2)5;(3)见解析【分析】(1)直接利用轴对称图形的性质得出对应点位置进而得出答案;(2)直接利用ABC所在长方形面积减去周围三角形面积进而得出答案;(3)先确定A关于轴的对称点,再连接交轴于则此时满足要求【详解】解:(1)如图所示:A1B1C1即为所求,A1(0,2),B1(2,4),C1(4,1);故答案为:(0,2),(2,4),(4,1);(2)ABC的面积为:121422235;故答案为:5;(3)如图所示:点P即为所求【点睛】本题考查的是轴对称的作图,坐标与图形,掌握“利用轴对称确定线段和取最小

21、值时点的位置”是解本题的关键.6、(1)ACO;(2)点C的坐标为(0,)【分析】(1)由同角的余角相等,可得到ABC=ACO;(2)利用面积法可求得CO的长,进而得到点C的坐标【详解】解:(1)OCAB,ACB=90ABC+BCO=ACO+BCO=90,ABC=ACO;故答案为:ACO;(2)AC=3,BC=4,AB=5,三角形ABC是直角三角形,ACB=90ABCO=ACBC,即CO=,点C的坐标为(0,)【点睛】本题考查了同角的余角相等,面积法求线段的长,坐标与图形,解题的关键是灵活运用所学知识解决问题7、(1)见解析;(2),【分析】(1)直接利用关于点O对称的性质得出对应点位置,顺次

22、连接各个对应点,即可;(2)根据对应点位置直接写出坐标,即可【详解】解:(1)如图所示,(2),【点睛】本题考查了利用中心对称变换在坐标系中作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键8、(1)图见解析, A1(2,-5)B1(1,-1),C1(3,-2) ; (2)图见解析,A2(-2,5),B2(-1,1),C2(-3,2);(3)3.5【分析】(1)分别作出点A、B、C关于x轴的对称点,再顺次连接可得,然后写出坐标;(2)分别作出点A、B、C关于y轴的对称点,再顺次连接可得,然后写出坐标;(3)利用割补法求解可得【详解】解:(1)如图所示,A1B1C1即为所求,A1(2,-5

23、),B1(1,-1),C1(3,-2) ;(2)如图所示,A2B2C2即为所求,A2(-2,5),B2(-1,1),C2(-3,2);(3)ABC的面积=3.5【点睛】本题主要考查作图-轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质9、(1)画图见解析;(2)画图见解析;(3)【分析】(1)分别确定绕逆时针旋转后的对应点再顺次连接从而可得答案;(2)分别确定关于原点对称的对称点再顺次连接从而可得答案;(3)如图,由;是旋转对应点,则到旋转中心的距离相等,到旋转中心的距离相等,可得线段的垂直平分线的交点即为旋转中心,再根据在坐标系内的位置写出其坐标即可.【详解】解:(1)如图,是所求作的

24、三角形,(2)如图,是所求作的三角形;(3)如图,;是旋转对应点, 到旋转中心的距离相等,到旋转中心的距离相等,则线段的垂直平分线的交点即为旋转中心,其坐标为:【点睛】本题考查的是旋转作图,中心对称的作图,确定旋转中心,掌握旋转的性质是解本题的关键.10、(1)见详解,点C 的坐标为(0,4);(2)见详解;(3)16【分析】(1)作B点关于y轴的对称点 连接与y轴的交点即为C点,即可求出点C的坐标;(2)根据网格画出ABC关于y轴对称的ABC即可;(3)根据梯形面积公式即可求四边形AABB的面积【详解】解:(1)所要求作ABC 如图所示,点C的坐标为(0,4);(2)ABC即为所求;(3)点A,B,A,B的坐标分别为:(3,1)、(1,5)、(3,1)、(1,5);四边形AABB的面积为: = (2+6)416【点睛】本题考查了作图轴对称变换,解决本题的关键是掌握轴对称的性质

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁